找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Evolutionary Multi-Criterion Optimization; 11th International C Hisao Ishibuchi,Qingfu Zhang,Aimin Zhou Conference proceedings 2021 Springe

[复制链接]
查看: 8525|回复: 57
发表于 2025-3-21 20:00:10 | 显示全部楼层 |阅读模式
书目名称Evolutionary Multi-Criterion Optimization
副标题11th International C
编辑Hisao Ishibuchi,Qingfu Zhang,Aimin Zhou
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Evolutionary Multi-Criterion Optimization; 11th International C Hisao Ishibuchi,Qingfu Zhang,Aimin Zhou Conference proceedings 2021 Springe
描述This book constitutes the refereed proceedings of the 11th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2021 held in Shenzhen, China, in March 2021..The 47 full papers and 14 short papers were carefully reviewed and selected from 120 submissions. The papers are divided into the following topical sections: theory; algorithms; dynamic multi-objective optimization; constrained multi-objective optimization; multi-modal optimization; many-objective optimization; performance evaluations and empirical studies; EMO and machine learning; surrogate modeling and expensive optimization; MCDM and interactive EMO; and applications..
出版日期Conference proceedings 2021
关键词artificial intelligence; correlation analysis; evolutionary algorithms; evolutionary multiobjective opt
版次1
doihttps://doi.org/10.1007/978-3-030-72062-9
isbn_softcover978-3-030-72061-2
isbn_ebook978-3-030-72062-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

书目名称Evolutionary Multi-Criterion Optimization影响因子(影响力)




书目名称Evolutionary Multi-Criterion Optimization影响因子(影响力)学科排名




书目名称Evolutionary Multi-Criterion Optimization网络公开度




书目名称Evolutionary Multi-Criterion Optimization网络公开度学科排名




书目名称Evolutionary Multi-Criterion Optimization被引频次




书目名称Evolutionary Multi-Criterion Optimization被引频次学科排名




书目名称Evolutionary Multi-Criterion Optimization年度引用




书目名称Evolutionary Multi-Criterion Optimization年度引用学科排名




书目名称Evolutionary Multi-Criterion Optimization读者反馈




书目名称Evolutionary Multi-Criterion Optimization读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:52:57 | 显示全部楼层
发表于 2025-3-22 02:21:55 | 显示全部楼层
发表于 2025-3-22 05:47:13 | 显示全部楼层
Pitfalls in Experimental Economicss. We propose a decomposition-based multi-objective evolutionary algorithm for solving MMOP (MOEA/D-MM). Experimental results on benchmarks show that MOEA/D-MM is more effective than some well-known traditional multi-objective evolutionary algorithms on MMOP.
发表于 2025-3-22 12:07:27 | 显示全部楼层
https://doi.org/10.1007/978-94-009-5767-1imization problems, showing that it outperforms five classical selection schemes with regard to solution quality and convergence speed. Besides, the Diversity Driven selection operator delivers good and considerably different solutions in the final population, which can be useful as design alternatives.
发表于 2025-3-22 14:19:46 | 显示全部楼层
MOEA/D for Multiple Multi-objective Optimizations. We propose a decomposition-based multi-objective evolutionary algorithm for solving MMOP (MOEA/D-MM). Experimental results on benchmarks show that MOEA/D-MM is more effective than some well-known traditional multi-objective evolutionary algorithms on MMOP.
发表于 2025-3-22 19:26:56 | 显示全部楼层
Diversity-Driven Selection Operator for Combinatorial Optimizationimization problems, showing that it outperforms five classical selection schemes with regard to solution quality and convergence speed. Besides, the Diversity Driven selection operator delivers good and considerably different solutions in the final population, which can be useful as design alternatives.
发表于 2025-3-22 23:28:27 | 显示全部楼层
发表于 2025-3-23 03:38:45 | 显示全部楼层
0302-9743 ti-modal optimization; many-objective optimization; performance evaluations and empirical studies; EMO and machine learning; surrogate modeling and expensive optimization; MCDM and interactive EMO; and applications..978-3-030-72061-2978-3-030-72062-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-23 08:14:32 | 显示全部楼层
EWA Learning in Bilateral Call Marketsl algorithms are not always inferior to the state of the arts, and all the algorithms considered in this paper face some unexpected challenges when dealing with irregularity of Pareto-optimal front. The findings suggest that a systematic evaluation and analysis is needed for any newly-developed algorithms to avoid biases.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-10 10:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表