找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Estimation of Distribution Algorithms; A New Tool for Evolu Pedro Larrañaga,Jose A. Lozano Book 2002 Springer Science+Business Media New Yo

[复制链接]
楼主: Stubborn
发表于 2025-3-30 09:50:04 | 显示全部楼层
https://doi.org/10.1007/978-1-4757-4896-3from the evaluation of the fitness function, the biggest computational cost in these EDAs is due to the structure learning step. We aim to speed up the structure learning step by the use of parallelism. Two different approaches will be given and evaluated experimentally in a shared memory MIMD computer.
发表于 2025-3-30 14:17:27 | 显示全部楼层
https://doi.org/10.1007/978-3-642-78208-4arch) is combined with EDAs to find better solutions. We show experimental results obtained on several standard examples for discrete and continuous EDAs both alone and combined with a heuristic local search.
发表于 2025-3-30 19:09:12 | 显示全部楼层
James R. Cullen,M. Melamud,K. Hathawaymple rules. This problem has been modeled to allow representations with different complexities. Experimental results comparing three types of EDAs —UMDA, a dependency tree and EBNAwith two classical algorithms of rule induction —RIPPER and CN2— are shown.
发表于 2025-3-30 21:22:31 | 显示全部楼层
Book 2002mation of distribution algorithms(EDAs). This new class of algorithms generalizes genetic algorithms byreplacing the crossover and mutation operators with learning andsampling from the probability distribution of the best individuals ofthe population at each iteration of the algorithm. Working in su
发表于 2025-3-31 04:03:23 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-9 16:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表