找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Estimation of Distribution Algorithms; A New Tool for Evolu Pedro Larrañaga,Jose A. Lozano Book 2002 Springer Science+Business Media New Yo

[复制链接]
查看: 25960|回复: 54
发表于 2025-3-21 18:32:55 | 显示全部楼层 |阅读模式
书目名称Estimation of Distribution Algorithms
副标题A New Tool for Evolu
编辑Pedro Larrañaga,Jose A. Lozano
视频video
丛书名称Genetic Algorithms and Evolutionary Computation
图书封面Titlebook: Estimation of Distribution Algorithms; A New Tool for Evolu Pedro Larrañaga,Jose A. Lozano Book 2002 Springer Science+Business Media New Yo
描述.Estimation of Distribution Algorithms: A New Tool forEvolutionary. .Computation. is devoted to a new paradigm forevolutionary computation, named estimation of distribution algorithms(EDAs). This new class of algorithms generalizes genetic algorithms byreplacing the crossover and mutation operators with learning andsampling from the probability distribution of the best individuals ofthe population at each iteration of the algorithm. Working in such away, the relationships between the variables involved in the problemdomain are explicitly and effectively captured and exploited. .This text constitutes the first compilation and review of thetechniques and applications of this new tool for performingevolutionary computation. .Estimation of Distribution Algorithms: ANew. .Tool for Evolutionary Computation. is clearly divided intothree parts. Part I is dedicated to the foundations of EDAs. In thispart, after introducing some probabilistic graphical models -Bayesian and Gaussian networks - a review of existing EDAapproaches is presented, as well as some new methods based on moreflexible probabilistic graphical models. A mathematical modeling ofdiscrete EDAs is also presented. Part II cove
出版日期Book 2002
关键词Bayesian network; Cluster; algorithms; evolutionary algorithm; genetic algorithms; k-means; learning; machi
版次1
doihttps://doi.org/10.1007/978-1-4615-1539-5
isbn_softcover978-1-4613-5604-2
isbn_ebook978-1-4615-1539-5Series ISSN 1568-2587
issn_series 1568-2587
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

书目名称Estimation of Distribution Algorithms影响因子(影响力)




书目名称Estimation of Distribution Algorithms影响因子(影响力)学科排名




书目名称Estimation of Distribution Algorithms网络公开度




书目名称Estimation of Distribution Algorithms网络公开度学科排名




书目名称Estimation of Distribution Algorithms被引频次




书目名称Estimation of Distribution Algorithms被引频次学科排名




书目名称Estimation of Distribution Algorithms年度引用




书目名称Estimation of Distribution Algorithms年度引用学科排名




书目名称Estimation of Distribution Algorithms读者反馈




书目名称Estimation of Distribution Algorithms读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:29:03 | 显示全部楼层
发表于 2025-3-22 04:19:29 | 显示全部楼层
发表于 2025-3-22 04:51:58 | 显示全部楼层
发表于 2025-3-22 10:41:32 | 显示全部楼层
Dario Braga,Fabrizia Grepioni,A. Guy Orpenhe most used Evolutionary Algorithms —Genetic Algorithms, Evolution Strategies and Evolutionary Programming— are explained in detail. We give pointers to the literature on their theoretical foundations.
发表于 2025-3-22 14:53:36 | 显示全部楼层
发表于 2025-3-22 17:08:04 | 显示全部楼层
https://doi.org/10.1007/978-3-642-95686-7 in continuous domains. Different approaches for Estimation of Distribution Algorithms have been ordered by the complexity of the interrelations that they are able to express. These will be introduced using one unified notation.
发表于 2025-3-23 00:52:19 | 显示全部楼层
发表于 2025-3-23 03:15:24 | 显示全部楼层
https://doi.org/10.1007/978-1-4757-4896-3etworks to model the probability distribution of the selected individuals, and particularly on those that use a score+search learning strategy. Apart from the evaluation of the fitness function, the biggest computational cost in these EDAs is due to the structure learning step. We aim to speed up th
发表于 2025-3-23 06:17:48 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-9 15:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表