找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Estimation and Testing Under Sparsity; École d‘Été de Proba Sara van de Geer Book 2016 Springer International Publishing Switzerland 2016 6

[复制链接]
查看: 53583|回复: 35
发表于 2025-3-21 19:33:40 | 显示全部楼层 |阅读模式
书目名称Estimation and Testing Under Sparsity
副标题École d‘Été de Proba
编辑Sara van de Geer
视频video
概述Starting with the popular Lasso method as its prime example, the book then extends to a broad family of estimation methods for high-dimensional data.A theoretical basis for sparsity-inducing methods i
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Estimation and Testing Under Sparsity; École d‘Été de Proba Sara van de Geer Book 2016 Springer International Publishing Switzerland 2016 6
描述Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course.
出版日期Book 2016
关键词62-XX; 60-XX, 68Q87; high-dimensional statistics; sparsity; empirical risk minimization; oracle inequali
版次1
doihttps://doi.org/10.1007/978-3-319-32774-7
isbn_softcover978-3-319-32773-0
isbn_ebook978-3-319-32774-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

书目名称Estimation and Testing Under Sparsity影响因子(影响力)




书目名称Estimation and Testing Under Sparsity影响因子(影响力)学科排名




书目名称Estimation and Testing Under Sparsity网络公开度




书目名称Estimation and Testing Under Sparsity网络公开度学科排名




书目名称Estimation and Testing Under Sparsity被引频次




书目名称Estimation and Testing Under Sparsity被引频次学科排名




书目名称Estimation and Testing Under Sparsity年度引用




书目名称Estimation and Testing Under Sparsity年度引用学科排名




书目名称Estimation and Testing Under Sparsity读者反馈




书目名称Estimation and Testing Under Sparsity读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:45:49 | 显示全部楼层
Book 2016egularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-
发表于 2025-3-22 04:11:07 | 显示全部楼层
发表于 2025-3-22 04:51:23 | 显示全部楼层
发表于 2025-3-22 10:54:31 | 显示全部楼层
978-3-319-32773-0Springer International Publishing Switzerland 2016
发表于 2025-3-22 15:02:53 | 显示全部楼层
Estimation and Testing Under Sparsity978-3-319-32774-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
发表于 2025-3-22 17:07:32 | 显示全部楼层
https://doi.org/10.1007/978-1-4757-4893-2mensional mainly due to the easy way to record or obtain data using the internet, or cameras, or new biomedical technologies, or shopping cards, etc. High-dimensional data can also be “constructed” from only a few variables by considering for example second, third, and higher order interactions.
发表于 2025-3-22 21:32:37 | 显示全部楼层
发表于 2025-3-23 04:32:25 | 显示全部楼层
Lecture Notes in Mathematicshttp://image.papertrans.cn/e/image/315781.jpg
发表于 2025-3-23 09:07:13 | 显示全部楼层
https://doi.org/10.1007/978-1-4757-4893-2mensional mainly due to the easy way to record or obtain data using the internet, or cameras, or new biomedical technologies, or shopping cards, etc. High-dimensional data can also be “constructed” from only a few variables by considering for example second, third, and higher order interactions.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 02:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表