找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Essentials of Partial Differential Equations; With Applications Marin Marin,Andreas Öchsner Book 2019 Springer International Publishing AG,

[复制链接]
楼主: 即将过时
发表于 2025-3-26 21:09:37 | 显示全部楼层
Harmonic FunctionsWe call a harmonic function on the open set ., any function . which is twice continuously differentiable on . and which verifies the equation ., where . is the operator of Laplace
发表于 2025-3-27 02:43:43 | 显示全部楼层
Weak Solutions of Classical ProblemsThe Sobolev spaces, which will be defined in the following, are spaces on which weak solutions can be defined (in a sense to be defined later) for classical boundary value problems.
发表于 2025-3-27 05:46:01 | 显示全部楼层
发表于 2025-3-27 10:13:58 | 显示全部楼层
发表于 2025-3-27 15:55:32 | 显示全部楼层
https://doi.org/10.1007/978-3-319-90647-8Green‘s function; Differential operators; characteristic surfaces; Levi functions; Green‘s formulas; Para
发表于 2025-3-27 18:43:35 | 显示全部楼层
发表于 2025-3-27 23:29:06 | 显示全部楼层
Weak Solutions for Parabolic Equations a regular surface. Here, we denoted by . a strictly positive real number. The problem (.) is the problem of the heat propagation and is a prototype for parabolic differential equations of second order.
发表于 2025-3-28 04:27:35 | 显示全部楼层
发表于 2025-3-28 06:54:36 | 显示全部楼层
Book 2019ms in this subject.. Divided into two parts, in the first part readers already well-acquainted with problems from the theory of differential and integral equations gain insights into the classical notions and problems, including differential operators, characteristic surfaces, Levi functions, Green’
发表于 2025-3-28 10:44:32 | 显示全部楼层
Weak Solutions for Parabolic Equations a regular surface. Here, we denoted by . a strictly positive real number. The problem (.) is the problem of the heat propagation and is a prototype for parabolic differential equations of second order.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 06:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表