找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Ergodic Theory; with a view towards Manfred Einsiedler,Thomas Ward Textbook 2011 Springer-Verlag London Limited 2011 Ergodic theory.Homoge

[复制链接]
楼主: satisficer
发表于 2025-3-23 13:01:13 | 显示全部楼层
发表于 2025-3-23 14:43:51 | 显示全部楼层
,Furstenberg’s Proof of Szemerédi’s Theorem,, including the case of weak-mixing and discrete spectrum systems, and Roth’s theorem. A simple proof of van der Waerden’s theorem is given, and we show how this may be used to simplify one step in Furstenberg’s proof.
发表于 2025-3-23 21:10:07 | 显示全部楼层
Actions of Locally Compact Groups,d: Haar measures, regular representations, amenability, mean ergodic theorems and the ergodic decomposition. The pointwise ergodic theorem is proved for a class of groups with polynomial growth, developing the approach to the maximal theorem via a covering lemma from Chapter 2.
发表于 2025-3-24 00:53:23 | 显示全部楼层
发表于 2025-3-24 03:16:27 | 显示全部楼层
发表于 2025-3-24 10:33:27 | 显示全部楼层
Effector-Mediated Pathogenicity,f ergodicity of the Gauss map is given. The relationship between continued fractions and Diophantine approximation is introduced, and some of the properties of badly approximable numbers are described. The continued fraction map will be revisited in Chapter 9 via the geodesic flow on a homogeneous space.
发表于 2025-3-24 13:21:29 | 显示全部楼层
发表于 2025-3-24 18:29:25 | 显示全部楼层
Provash Chandra Sadhukhan,Sanjay Premid: Haar measures, regular representations, amenability, mean ergodic theorems and the ergodic decomposition. The pointwise ergodic theorem is proved for a class of groups with polynomial growth, developing the approach to the maximal theorem via a covering lemma from Chapter 2.
发表于 2025-3-24 19:19:42 | 显示全部楼层
发表于 2025-3-25 01:10:26 | 显示全部楼层
A. Singh,R. C. Kuhad,V. Sahai,P. Ghoshtionship between various mixing properties is described. The mean and pointwise ergodic theorems are proved. An approach to the maximal ergodic theorem via a covering lemma is given, which will be extended in Chapter 8 to more general group actions.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 16:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表