找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Equimultiplicity and Blowing Up; An Algebraic Study Manfred Herrmann,Ulrich Orbanz,Shin Ikeda Book 1988 Springer-Verlag Berlin Heidelberg 1

[复制链接]
楼主: sustained
发表于 2025-3-27 00:23:54 | 显示全部楼层
发表于 2025-3-27 01:44:56 | 显示全部楼层
Various Notions of Equimultiple and Permissible Ideals,et (R,m) be a local ring and let p be a prime ideal of R. Recall that, by definition (10.10), s(p) − 1 is the dimension of the fibre of the morphism . at the closed point m of Spec(R) (this fibre being Proj (G(p,R)⊗.R/m) . Likewise, if q is any prime ideal of R containing p, then s(pR.) − 1 is the d
发表于 2025-3-27 09:06:06 | 显示全部楼层
发表于 2025-3-27 09:37:40 | 显示全部楼层
发表于 2025-3-27 14:27:19 | 显示全部楼层
发表于 2025-3-27 18:55:16 | 显示全部楼层
Generalized Cohen-Macaulay Rings and Blowing Up,ometry frequently. For example, if X⊆.. is an irreducible, non-singular projective variety over a field k, then the local ring at the vertex of the affine cone over X satisfies this property (cf. Hartshorne [1]; see also the remark at the end of § 35 in Chapter VII). The purpose of this chapter is t
发表于 2025-3-27 23:52:11 | 显示全部楼层
发表于 2025-3-28 04:56:47 | 显示全部楼层
Nonautonomous Dynamical Systems,in the study of the numerical behaviour of singularities under blowing up singular centers. In this Chapter V we want to show that these conditions are also of some use to investigate Cohen-Macaulay properties under blowing up, which are essential for the local and global study of algebraic varietie
发表于 2025-3-28 06:51:56 | 显示全部楼层
发表于 2025-3-28 10:41:09 | 显示全部楼层
Book 1988y for complex analytic spaces is given a geometric interpretation and its equivalence to the algebraic notion is explained. The book is primarily addressed to specialists in the subject but the self-contained and unified presentation of numerous earlier results make it accessible to graduate student
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 12:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表