找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Enriques Surfaces I; François R. Cossec,Igor V. Dolgachev Book 1989 Birkhäuser Boston 1989 Divisor.Grad.Jacobi.algebra.algebraic surface

[复制链接]
楼主: T-cell
发表于 2025-3-23 13:16:55 | 显示全部楼层
发表于 2025-3-23 14:15:18 | 显示全部楼层
发表于 2025-3-23 18:42:01 | 显示全部楼层
Preliminaries,A morphism f: X → Y of integral schemes over an algebraically closed field K is called a . if f is finite and of degree 2. A double cover is said to be . (resp. . if the corresponding extension of the fields of rational functions is separable (resp. inseparable).
发表于 2025-3-24 00:54:14 | 显示全部楼层
Enriques Surfaces: Generalities,Let K be an algebraically closed field of arbitrary characteristic p. In this section we recall the main results of the classification of nonsingular projective surfaces over K. We refer to . for the proofs of all the assertions peculiar to the case of positive characteristic and to general textbooks . for the case of characteristic zero.
发表于 2025-3-24 04:47:30 | 显示全部楼层
Lattices and Root Bases,A . is a free abelian group M of finite rank rk(M) equipped with a symmetric bilinear form ϕ:MxM → .. The value of this form on a pair (x,y)∈MxM will be denoted by x•y. We write x. to denote x•x.
发表于 2025-3-24 07:28:20 | 显示全部楼层
发表于 2025-3-24 12:23:22 | 显示全部楼层
发表于 2025-3-24 16:36:35 | 显示全部楼层
Genus One Fibration,Let S be a regular integral scheme of dimension 1, η be its generic point and K = K(η) be its residue field. A projective morphism f: X → S is said to be . if X is regular and irreducible, and the general fibre X. is a geometrically integral regular algebraic curve of arithmetic genus 1.
发表于 2025-3-24 20:31:51 | 显示全部楼层
https://doi.org/10.1007/978-3-319-50775-0e of them to give the first examples of nonrational algebraic surfaces on which there are no regular differential forms. At the same time a different construction of such surfaces was given by another Italian geometer, no less famous, Guido Castelnuovo. The original construction of Enriques gives a
发表于 2025-3-24 23:51:43 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 00:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表