找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Engineering Dependable and Secure Machine Learning Systems; Third International Onn Shehory,Eitan Farchi,Guy Barash Conference proceedings

[复制链接]
楼主: Coronary-Artery
发表于 2025-3-23 13:09:52 | 显示全部楼层
Principal Component Properties of Adversarial Samples,ns to the principal components of neural network inputs. We propose a new metric for neural networks to measure their robustness to adversarial samples, termed the (., .) point. We utilize this metric to achieve 93.36% accuracy in detecting adversarial samples independent of architecture and attack type for models trained on ImageNet.
发表于 2025-3-23 14:03:54 | 显示全部楼层
1865-0929 Systems, EDSMLS 2020, held in New York City, NY, USA, in February 2020. .The 7 full papers and 3 short papers were thoroughly reviewed and selected from 16 submissions. The volume presents original research on dependability and quality assurance of ML software systems, adversarial attacks on ML soft
发表于 2025-3-23 20:11:09 | 显示全部楼层
Communications in Computer and Information Sciencehttp://image.papertrans.cn/e/image/310749.jpg
发表于 2025-3-24 01:27:05 | 显示全部楼层
发表于 2025-3-24 03:42:30 | 显示全部楼层
Neue Entwicklungen und Zukunftsperspektiven, to fool a model, but appear normal to human beings. Recent work has shown that pixel discretization can be used to make classifiers for MNIST highly robust to adversarial examples. However, pixel discretization fails to provide significant protection on more complex datasets. In this paper, we take
发表于 2025-3-24 06:54:01 | 显示全部楼层
https://doi.org/10.1007/978-3-322-86803-9wever, while poisoning attacks typically corrupt data in various ways including addition, omission and modification, to optimize the attack, we focus on omission only, which is much simpler to implement and analyze. A major advantage of our attack method is its generality. While poisoning attacks ar
发表于 2025-3-24 13:32:54 | 显示全部楼层
发表于 2025-3-24 15:07:32 | 显示全部楼层
发表于 2025-3-24 19:46:14 | 显示全部楼层
发表于 2025-3-25 00:54:01 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 20:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表