找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Engineering Dependable and Secure Machine Learning Systems; Third International Onn Shehory,Eitan Farchi,Guy Barash Conference proceedings

[复制链接]
查看: 15627|回复: 42
发表于 2025-3-21 19:36:32 | 显示全部楼层 |阅读模式
书目名称Engineering Dependable and Secure Machine Learning Systems
副标题Third International
编辑Onn Shehory,Eitan Farchi,Guy Barash
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Engineering Dependable and Secure Machine Learning Systems; Third International  Onn Shehory,Eitan Farchi,Guy Barash Conference proceedings
描述This book constitutes the revised selected papers of the Third International Workshop on Engineering Dependable and Secure Machine Learning Systems, EDSMLS 2020, held in New York City, NY, USA, in February 2020. .The 7 full papers and 3 short papers were thoroughly reviewed and selected from 16 submissions. The volume presents original research on dependability and quality assurance of ML software systems, adversarial attacks on ML software systems, adversarial ML and software engineering, etc. .
出版日期Conference proceedings 2020
关键词artificial intelligence; computer networks; computer programming; computer security; computer systems; co
版次1
doihttps://doi.org/10.1007/978-3-030-62144-5
isbn_softcover978-3-030-62143-8
isbn_ebook978-3-030-62144-5Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Engineering Dependable and Secure Machine Learning Systems影响因子(影响力)




书目名称Engineering Dependable and Secure Machine Learning Systems影响因子(影响力)学科排名




书目名称Engineering Dependable and Secure Machine Learning Systems网络公开度




书目名称Engineering Dependable and Secure Machine Learning Systems网络公开度学科排名




书目名称Engineering Dependable and Secure Machine Learning Systems被引频次




书目名称Engineering Dependable and Secure Machine Learning Systems被引频次学科排名




书目名称Engineering Dependable and Secure Machine Learning Systems年度引用




书目名称Engineering Dependable and Secure Machine Learning Systems年度引用学科排名




书目名称Engineering Dependable and Secure Machine Learning Systems读者反馈




书目名称Engineering Dependable and Secure Machine Learning Systems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:18:11 | 显示全部楼层
发表于 2025-3-22 03:55:18 | 显示全部楼层
,Konstruktion lärmarmer Maschinen,ency information. We show that on all quantitative and qualitative evaluations, the combined model gives the best results, but also that only training with RL and without any syntactic information already gives nearly as good results as syntax-aware models with less parameters and faster training convergence.
发表于 2025-3-22 08:34:35 | 显示全部楼层
Learner-Independent Targeted Data Omission Attacks, this effectiveness via a series of attack experiments against various learning mechanisms. We show that, with a relatively low attack budget, our omission attack succeeds regardless of the target learner.
发表于 2025-3-22 08:48:38 | 显示全部楼层
发表于 2025-3-22 16:02:21 | 显示全部楼层
发表于 2025-3-22 19:14:00 | 显示全部楼层
发表于 2025-3-23 01:06:41 | 显示全部楼层
1865-0929 om 16 submissions. The volume presents original research on dependability and quality assurance of ML software systems, adversarial attacks on ML software systems, adversarial ML and software engineering, etc. .978-3-030-62143-8978-3-030-62144-5Series ISSN 1865-0929 Series E-ISSN 1865-0937
发表于 2025-3-23 04:32:34 | 显示全部楼层
Conference proceedings 2020DSMLS 2020, held in New York City, NY, USA, in February 2020. .The 7 full papers and 3 short papers were thoroughly reviewed and selected from 16 submissions. The volume presents original research on dependability and quality assurance of ML software systems, adversarial attacks on ML software syste
发表于 2025-3-23 07:00:39 | 显示全部楼层
,Thermische oder mechanische Überbelastung,ns to the principal components of neural network inputs. We propose a new metric for neural networks to measure their robustness to adversarial samples, termed the (., .) point. We utilize this metric to achieve 93.36% accuracy in detecting adversarial samples independent of architecture and attack type for models trained on ImageNet.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 16:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表