找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Engineering Applications of Neural Networks; 16th International C Lazaros Iliadis,Chrisina Jayne Conference proceedings 2015 Springer Inter

[复制链接]
楼主: controllers
发表于 2025-3-23 12:38:19 | 显示全部楼层
发表于 2025-3-23 14:02:04 | 显示全部楼层
https://doi.org/10.1007/978-1-349-09001-3n locally optimized parameters and globally optimized parameters. The multithreaded local learning regularization neural networks are implemented with OpenMP. The accuracy of the algorithms is tested against several benchmark datasets. The parallel efficiency and speedup is evaluated on a multi-core system.
发表于 2025-3-23 20:39:51 | 显示全部楼层
On-line Surface Roughness Prediction in Grinding Using Recurrent Neural Networks in this work the prediction of the surface roughness (..) evolution based on Recurrent Neural Networks is presented with the capability to generalize to new grinding wheels and conditions. Results show excellent prediction of the surface finish evolution. The absolute maximum error is below 0.49µm, being the average error around 0.32µm.
发表于 2025-3-23 23:16:55 | 显示全部楼层
发表于 2025-3-24 05:30:43 | 显示全部楼层
发表于 2025-3-24 06:35:16 | 显示全部楼层
Multithreaded Local Learning Regularization Neural Networks for Regression Tasksn locally optimized parameters and globally optimized parameters. The multithreaded local learning regularization neural networks are implemented with OpenMP. The accuracy of the algorithms is tested against several benchmark datasets. The parallel efficiency and speedup is evaluated on a multi-core system.
发表于 2025-3-24 13:44:46 | 显示全部楼层
发表于 2025-3-24 15:17:07 | 显示全部楼层
Self-Train LogitBoost for Semi-supervised Learninghe Logitboost regression tree model is more confident at the unlabeled instances. We performed a comparison with other well-known semi-supervised classification methods on standard benchmark datasets and the presented technique had better accuracy in most cases.
发表于 2025-3-24 23:05:53 | 显示全部楼层
Conference proceedings 2015ormatics; intelligent medical modeling; life-earth sciences intelligent modeling; learning-algorithms; intelligent telecommunications modeling; fuzzy modeling; robotics and control; smart cameras; pattern recognition-facial mapping; classification; financial intelligent modeling; echo state networks..
发表于 2025-3-25 00:12:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 20:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表