找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Energy Minimization Methods in Computer Vision and Pattern Recognition; 5th International Wo Anand Rangarajan,Baba Vemuri,Alan L. Yuille Co

[复制链接]
查看: 15481|回复: 63
发表于 2025-3-21 19:58:10 | 显示全部楼层 |阅读模式
书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition
副标题5th International Wo
编辑Anand Rangarajan,Baba Vemuri,Alan L. Yuille
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Energy Minimization Methods in Computer Vision and Pattern Recognition; 5th International Wo Anand Rangarajan,Baba Vemuri,Alan L. Yuille Co
出版日期Conference proceedings 2005
关键词3D; Image segmentation; Variable; affine transform; algorithmic learning; clustering; cognition; image anal
版次1
doihttps://doi.org/10.1007/11585978
isbn_softcover978-3-540-30287-2
isbn_ebook978-3-540-32098-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2005
The information of publication is updating

书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition影响因子(影响力)




书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition影响因子(影响力)学科排名




书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition网络公开度




书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition网络公开度学科排名




书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition被引频次




书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition被引频次学科排名




书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition年度引用




书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition年度引用学科排名




书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition读者反馈




书目名称Energy Minimization Methods in Computer Vision and Pattern Recognition读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:46:26 | 显示全部楼层
发表于 2025-3-22 01:00:45 | 显示全部楼层
Optimizing the Cauchy-Schwarz PDF Distance for Information Theoretic, Non-parametric Clusteringemberships of the data patterns, in order to maximize the recent Cauchy-Schwarz (CS) probability density function (pdf) distance measure. Each pdf corresponds to a cluster. The CS distance is estimated analytically and non-parametrically by means of the Parzen window technique for density estimation
发表于 2025-3-22 08:02:18 | 显示全部楼层
发表于 2025-3-22 09:42:48 | 显示全部楼层
发表于 2025-3-22 15:01:36 | 显示全部楼层
Bayesian Image Segmentation Using Gaussian Field Priorsally discrete problem. Bayesian approaches to segmentation use priors to impose spatial coherence; the discrete nature of segmentation demands priors defined on discrete-valued fields, thus leading to difficult combinatorial problems..This paper presents a formulation which allows using continuous p
发表于 2025-3-22 20:46:34 | 显示全部楼层
Handling Missing Data in the Computation of 3D Affine Transformationsmanner have proven the most effective to deal with large image sequences. One of the key building blocks of these hierarchical approaches is the alignment of two partial 3D models, which requires to express them in the same 3D coordinate frame by computing a 3D transformation. This problem has been
发表于 2025-3-23 01:10:27 | 显示全部楼层
发表于 2025-3-23 02:43:15 | 显示全部楼层
Deformable-Model Based Textured Object Segmentationces in traditional deformable models come primarily from edges or gradient information and it becomes problematic when the object surfaces have complex large-scale texture patterns that generate many local edges within a same region. We introduce a new textured object segmentation algorithm that has
发表于 2025-3-23 08:40:29 | 显示全部楼层
Total Variation Minimization and a Class of Binary MRF Modelsion approach to image denoising. We show, more precisely, that solutions to binary MRFs can be found by minimizing an appropriate ROF problem, and vice-versa. This leads to new algorithms. We then compare the efficiency of various algorithms.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 14:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表