找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Emerging Trends in Knowledge Discovery and Data Mining; PAKDD 2012 Internati Takashi Washio,Jun Luo Conference proceedings 2013 Springer-Ve

[复制链接]
查看: 35437|回复: 49
发表于 2025-3-21 17:33:36 | 显示全部楼层 |阅读模式
书目名称Emerging Trends in Knowledge Discovery and Data Mining
副标题PAKDD 2012 Internati
编辑Takashi Washio,Jun Luo
视频video
概述High quality selected papers.Unique visibility.State of the art research
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Emerging Trends in Knowledge Discovery and Data Mining; PAKDD 2012 Internati Takashi Washio,Jun Luo Conference proceedings 2013 Springer-Ve
描述This book constitutes the thoroughly refereed proceedings of the PAKDD 2012 International Workshops: Third Workshop on Data Mining for Healthcare Management (DMHM 2012), First Workshop on Geospatial Information and Documents (GeoDoc 2012), First Workshop on Multi-view data, High-dimensionality, External Knowledge: Striving for a Unified Approach to Clustering (3Clust 2012), and the Second Doctoral Symposium on Data Mining (DSDM 2012); held in conjunction with the 16th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2012), in Kuala Lumpur, Malaysia, May/June 2012. .The 12 revised papers presented were carefully reviewed and selected from numerous submissions. DMHM 2012 aimed at providing a common platform for the discussion of challenging issues and potential techniques in this emerging field of data mining for health care management; 3Clust 2012 focused on solving emerging problems such as clustering ensembles, semi-supervised clustering, subspace/projective clustering, co-clustering, and multi-view clustering; GeoDoc 2012 highlighted the formalization of geospatial concepts and relationships with a focus on the extraction of geospatial relations in free text
出版日期Conference proceedings 2013
关键词classification; health informatics; information retrieval; machine learning; process mining
版次1
doihttps://doi.org/10.1007/978-3-642-36778-6
isbn_softcover978-3-642-36777-9
isbn_ebook978-3-642-36778-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

书目名称Emerging Trends in Knowledge Discovery and Data Mining影响因子(影响力)




书目名称Emerging Trends in Knowledge Discovery and Data Mining影响因子(影响力)学科排名




书目名称Emerging Trends in Knowledge Discovery and Data Mining网络公开度




书目名称Emerging Trends in Knowledge Discovery and Data Mining网络公开度学科排名




书目名称Emerging Trends in Knowledge Discovery and Data Mining被引频次




书目名称Emerging Trends in Knowledge Discovery and Data Mining被引频次学科排名




书目名称Emerging Trends in Knowledge Discovery and Data Mining年度引用




书目名称Emerging Trends in Knowledge Discovery and Data Mining年度引用学科排名




书目名称Emerging Trends in Knowledge Discovery and Data Mining读者反馈




书目名称Emerging Trends in Knowledge Discovery and Data Mining读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:31:30 | 显示全部楼层
,Adaptive Evidence Accumulation Clustering Using the Confidence of the Objects’ Assignments, cluster. The degree of confidence is then used to select which objects should be emphasized in the learning process of the clustering algorithm. New consensus partition validity measures, based on the notion of degree of confidence, are also proposed. In order to evaluate the performance of our app
发表于 2025-3-22 03:47:26 | 显示全部楼层
发表于 2025-3-22 07:10:17 | 显示全部楼层
发表于 2025-3-22 10:44:07 | 显示全部楼层
发表于 2025-3-22 13:39:05 | 显示全部楼层
0302-9743 ering, subspace/projective clustering, co-clustering, and multi-view clustering; GeoDoc 2012 highlighted the formalization of geospatial concepts and relationships with a focus on the extraction of geospatial relations in free text 978-3-642-36777-9978-3-642-36778-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-22 19:10:45 | 显示全部楼层
发表于 2025-3-23 00:53:28 | 显示全部楼层
Offenlegungspolitik von Investmentfonds cluster. The degree of confidence is then used to select which objects should be emphasized in the learning process of the clustering algorithm. New consensus partition validity measures, based on the notion of degree of confidence, are also proposed. In order to evaluate the performance of our app
发表于 2025-3-23 01:58:34 | 显示全部楼层
发表于 2025-3-23 08:27:28 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 04:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表