找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Emerging Trends in Intelligent Systems & Network Security; Mohamed Ben Ahmed,Boudhir Anouar Abdelhakim,Didi R Conference proceedings 2023

[复制链接]
楼主: Wilder
发表于 2025-3-30 09:55:56 | 显示全部楼层
发表于 2025-3-30 15:41:51 | 显示全部楼层
https://doi.org/10.1057/978-1-349-96048-4t of smart public transportation, it has been evaluated that it is a system that provides information such as speed, route, location and arrival time for all vehicles used in public transportation in real time. It is an efficient, effective, innovative, dynamic, environmentalist, value-added and sus
发表于 2025-3-30 20:31:54 | 显示全部楼层
A. Bankier,J. Brady,N. A. Myersusing a hidden units parameter of 128, dropout parameter of 0.3, and recurrent dropout parameter of 0.3. Results show that the attention mechanism can improve the performance of the LSTM model in performing aspect-based sentiment analysis.
发表于 2025-3-31 00:39:02 | 显示全部楼层
Of Books, Barns, and BoardroomsTE and without SMOTE with Stratified K-Fold CV algorithm. The highest performance accuracy with SMOTE is obtained at 90.7% with the SVM model. Whereas without SMOTE, the highest performance accuracy uses the SVM with a value of 87.8%. Furthermore, with the addition of the Stratified K-Fold CV algori
发表于 2025-3-31 02:54:48 | 显示全部楼层
Emerging Trends in Intelligent Systems & Network Security
发表于 2025-3-31 05:16:37 | 显示全部楼层
发表于 2025-3-31 11:52:36 | 显示全部楼层
A Proposed Big Data Architecture Using Data Lakes for Education Systems,e management of the different data sources to their final consumption. The proposal approach includes data lake as a means of modernizing decision-making processes, in particular data warehouses and OLAP methods. It will be used as a means for data consolidation for the integration of heterogeneous
发表于 2025-3-31 14:29:40 | 显示全部楼层
发表于 2025-3-31 18:11:51 | 显示全部楼层
Aspect-Based Sentiment Analysis of Indonesian-Language Hotel Reviews Using Long Short-Term Memory wusing a hidden units parameter of 128, dropout parameter of 0.3, and recurrent dropout parameter of 0.3. Results show that the attention mechanism can improve the performance of the LSTM model in performing aspect-based sentiment analysis.
发表于 2025-3-31 21:41:11 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 12:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表