找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elliptic Systems of Phase Transition Type; Nicholas D. Alikakos,Giorgio Fusco,Panayotis Smyrn Book 2018 Springer Nature Switzerland AG 201

[复制链接]
楼主: Adentitious
发表于 2025-3-25 05:09:47 | 显示全部楼层
发表于 2025-3-25 09:18:40 | 显示全部楼层
发表于 2025-3-25 12:11:04 | 显示全部楼层
Quadratische Formen nebst Anwendungen,In Sect. 2.4 we develop an alternative approach via constrained minimization. Most readers will find this easier and also good preparation for the polar form and the cut-off lemma in Chap. .. In Sect. 2.6 we consider the connection problem for an unbalanced double-well potential, and handle it via t
发表于 2025-3-25 16:37:32 | 显示全部楼层
发表于 2025-3-25 22:02:38 | 显示全部楼层
Matrizenrechnung in der Baumechanika neighborhood of a point. We work in a symmetry context where a finite reflection group . is acting both on the domain space . and on the target space ., which are assumed to be of the same dimension. The scope of this chapter is to introduce the main ideas involved in the proof of Theorem . which
发表于 2025-3-26 02:15:47 | 显示全部楼层
发表于 2025-3-26 06:05:30 | 显示全部楼层
发表于 2025-3-26 12:17:27 | 显示全部楼层
Group Symmetries with ,-Invariance, represented by maps . that minimize the one-dimensional energy .. Under a nondegeneracy condition on ., . = 1, …, . and in two space dimensions we characterize the minimizers . of the energy . that converge uniformly to .. as one of the coordinates converges to ±.. We prove that a bounded minimizer
发表于 2025-3-26 12:50:54 | 显示全部楼层
https://doi.org/10.1007/978-3-319-90572-3geodesics; standing waves; maximum principle; point group; crystalline; partial differential equations; or
发表于 2025-3-26 18:50:48 | 显示全部楼层
Kehrmatrix und MatrizendivisionIn this chapter we give an overview of the book. We state and motivate the main theorems and refer the reader to the appropriate sections.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 20:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表