找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elliptic Regularity Theory; A First Course Lisa Beck Book 2016 Springer International Publishing Switzerland 2016 35J47,35B65,49N60.quasili

[复制链接]
查看: 31045|回复: 35
发表于 2025-3-21 18:32:20 | 显示全部楼层 |阅读模式
书目名称Elliptic Regularity Theory
副标题A First Course
编辑Lisa Beck
视频video
概述Gives a systematic, self-contained account of the topic.Presents recent results for the first time.Intended for researchers and graduate students with background in real and functional analysis
丛书名称Lecture Notes of the Unione Matematica Italiana
图书封面Titlebook: Elliptic Regularity Theory; A First Course Lisa Beck Book 2016 Springer International Publishing Switzerland 2016 35J47,35B65,49N60.quasili
描述.These lecture notes provide a self-contained introduction to regularity theory for elliptic equations and systems in divergence form. After a short review of some classical results on everywhere regularity for scalar-valued weak solutions, the presentation focuses on vector-valued weak solutions to a system of several coupled equations. In the vectorial case, weak solutions may have discontinuities and so are expected, in general, to be regular only outside of a set of measure zero. Several methods are presented concerning the proof of such partial regularity results, and optimal regularity is discussed. Finally, a short overview is given on the current state of the art concerning the size of the singular set on which discontinuities may occur...The notes are intended for graduate and postgraduate students with a solid background in functional analysis and some familiarity with partial differential equations; they will also be of interest to researchers working on related topics..
出版日期Book 2016
关键词35J47,35B65,49N60; quasilinear elliptic systems; weak solutions; (partial) regularity; dimension reducti
版次1
doihttps://doi.org/10.1007/978-3-319-27485-0
isbn_softcover978-3-319-27484-3
isbn_ebook978-3-319-27485-0Series ISSN 1862-9113 Series E-ISSN 1862-9121
issn_series 1862-9113
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

书目名称Elliptic Regularity Theory影响因子(影响力)




书目名称Elliptic Regularity Theory影响因子(影响力)学科排名




书目名称Elliptic Regularity Theory网络公开度




书目名称Elliptic Regularity Theory网络公开度学科排名




书目名称Elliptic Regularity Theory被引频次




书目名称Elliptic Regularity Theory被引频次学科排名




书目名称Elliptic Regularity Theory年度引用




书目名称Elliptic Regularity Theory年度引用学科排名




书目名称Elliptic Regularity Theory读者反馈




书目名称Elliptic Regularity Theory读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:16:02 | 显示全部楼层
发表于 2025-3-22 01:22:28 | 显示全部楼层
发表于 2025-3-22 08:35:38 | 显示全部楼层
1862-9113 unctional analysis and some familiarity with partial differential equations; they will also be of interest to researchers working on related topics..978-3-319-27484-3978-3-319-27485-0Series ISSN 1862-9113 Series E-ISSN 1862-9121
发表于 2025-3-22 12:48:35 | 显示全部楼层
发表于 2025-3-22 15:02:44 | 显示全部楼层
发表于 2025-3-22 20:11:34 | 显示全部楼层
Partial Regularity Results for Quasilinear Systems,for a non-trivial bound on its Hausdorff dimensions, but this requires further work. In different settings, from simple to quite general ones, we explain (fractional) higher differentiability estimates for the gradient of weak solutions. These provide, in turn, the desired bounds for the Hausdorff dimension of the singular set.
发表于 2025-3-23 01:07:54 | 显示全部楼层
发表于 2025-3-23 03:16:33 | 显示全部楼层
发表于 2025-3-23 06:15:46 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 07:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表