找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elliptic Quantum Groups; Representations and Hitoshi Konno Book 2020 Springer Nature Singapore Pte Ltd. 2020 Elliptic quantum groups.Verte

[复制链接]
楼主: 法令
发表于 2025-3-25 04:19:44 | 显示全部楼层
Elliptic Quantum Group ,,tion. In addition, following the quasi-Hopf formulation ., we introduce the ..-operator and show that the difference between the +  and the − half currents gives the elliptic currents of .. Furthermore a connection to Felder’s formulation is shown by introducing the dynamical .-operators.
发表于 2025-3-25 08:36:56 | 显示全部楼层
The ,-Hopf-Algebroid Structure of ,,t certain shifts by . and . in . when they move from one tensor component to the other. These shifts produce the same effects as the dynamical shift in the DYBE and the dynamical .-relation. Hence the .-Hopf-algebroid structure provides a convenient co-algebra structure compatible with the dynamical shift. See Chaps. .–..
发表于 2025-3-25 14:26:55 | 显示全部楼层
Representations of ,,al., Comm. Math. Phys. ., 605–647 (1999); Kojima and Konno, Comm. Math. Phys. ., 405–447 (2003); Konno, SIGMA, ., Paper 091, 25 pages (2006); Farghly et al., Algebr. Represent. Theory ., 103–135 (2014)).
发表于 2025-3-25 16:08:03 | 显示全部楼层
发表于 2025-3-25 21:00:38 | 显示全部楼层
Related Geometry,n be identified with .. Based on this identification, we also show a correspondence between the Gelfand-Tsetlin basis (resp. the standard basis) of . in Chap. . and the fixed point classes (resp. the stable classes) in E.(.). This correspondence allows us to construct an action of . on E.(.).
发表于 2025-3-26 02:23:31 | 显示全部楼层
发表于 2025-3-26 04:18:37 | 显示全部楼层
发表于 2025-3-26 12:12:02 | 显示全部楼层
Tensor Product Representation,s matrix from the standard basis to the Gelfand-Tsetlin basis is given by a specialization of the elliptic weight functions. The resultant action is expressed in a perfectly combinatorial way in terms of the partitions of [1, .]. In Chap. . we discuss a geometric interpretation of it.
发表于 2025-3-26 15:18:06 | 显示全部楼层
发表于 2025-3-26 18:07:32 | 显示全部楼层
William Weaver Jr.,James M. Gereal., Comm. Math. Phys. ., 605–647 (1999); Kojima and Konno, Comm. Math. Phys. ., 405–447 (2003); Konno, SIGMA, ., Paper 091, 25 pages (2006); Farghly et al., Algebr. Represent. Theory ., 103–135 (2014)).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 19:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表