找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elliptic Curves, Modular Forms and Iwasawa Theory; In Honour of John H. David Loeffler,Sarah Livia Zerbes Conference proceedings 2016 Sprin

[复制链接]
楼主: Malinger
发表于 2025-3-28 18:00:56 | 显示全部楼层
https://doi.org/10.1007/978-3-662-28432-2patible systems. Our main result is that in a sufficiently irreducible compatible system the residual images are big at a density one set of primes. This result should make some of the work of Clozel, Harris and Taylor easier to apply in the setting of compatible systems.
发表于 2025-3-28 20:31:03 | 显示全部楼层
发表于 2025-3-29 01:31:07 | 显示全部楼层
Compactifications of S-arithmetic Quotients for the Projective General Linear Group,metric space (resp., Bruhat-Tits building) associated to . if . is archimedean (resp., non-archimedean). In this paper, we construct compactifications . of the quotient spaces . for .-arithmetic subgroups . of .. The constructions make delicate use of the maximal Satake compactification of . (resp.,
发表于 2025-3-29 05:47:44 | 显示全部楼层
,Control of ,-adic Mordell–Weil Groups,algebra and the “big” Hecke algebra. We prove a control theorem of the ordinary part of the .-MW groups under mild assumptions. We have proven a similar control theorem for the dual completed inductive limit in [.].
发表于 2025-3-29 09:07:37 | 显示全部楼层
Some Congruences for Non-CM Elliptic Curves,ents of Iwasawa algebras of abelian sub-quotients of . due to the work of Ritter-Weiss and Kato (generalised by the author). In the former one needs to work with all abelian subquotients of . whereas in Kato’s approach one can work with a certain well-chosen sub-class of abelian sub-quotients of ..
发表于 2025-3-29 13:52:02 | 显示全部楼层
,On ,-adic Interpolation of Motivic Eisenstein Classes, étale cohomology. This connects them to Iwasawa theory and generalizes and strengthens the results for elliptic curves obtained in our former work. In particular, degeneration questions can be treated easily.
发表于 2025-3-29 18:21:28 | 显示全部楼层
发表于 2025-3-29 23:02:01 | 显示全部楼层
,Coates–Wiles Homomorphisms and Iwasawa Cohomology for Lubin–Tate Extensions, terms of the .-operator acting on the attached etale .-module .(.). In this chapter we generalize Fontaine’s result to the case of arbitrary Lubin–Tate towers . over finite extensions . of . by using the Kisin–Ren/Fontaine equivalence of categories between Galois representations and .-modules and e
发表于 2025-3-30 01:36:09 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 13:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表