找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elliptic Boundary Value Problems in the Spaces of Distributions; Yakov Roitberg Book 1996 Springer Science+Business Media Dordrecht 1996 B

[复制链接]
楼主: otitis-externa
发表于 2025-3-25 06:16:14 | 显示全部楼层
978-94-010-6276-3Springer Science+Business Media Dordrecht 1996
发表于 2025-3-25 10:10:52 | 显示全部楼层
Overview: 978-94-010-6276-3978-94-011-5410-9
发表于 2025-3-25 11:46:17 | 显示全部楼层
发表于 2025-3-25 18:25:38 | 显示全部楼层
发表于 2025-3-25 23:01:03 | 显示全部楼层
发表于 2025-3-26 02:05:11 | 显示全部楼层
Elliptic Problems with Normal Boundary Conditions,ction 1.10). Below, we consider only special local coordinates defined in a sufficiently small neighborhood .(..) of every point .. ∈ ∂.. If (.′,…, .′.) is any other system of special coordinates in G ∩ ., then, in . ∩ . ∩) G, we have . and the determinant of the Jacobi matrix det .′/. of this transformation is not equal to zero.
发表于 2025-3-26 04:50:22 | 显示全部楼层
Construction of a Regular Heptadecagon,o [Agm], [AgN], and [Som]) as a class of elliptic boundary-value problems with a parameter. In the papers mentioned above, elliptic boundary-value problems with a parameter were studied in classes of sufficiently smooth functions. In [Roi18]-[Roi20], [RoS1], and [RoS2], these problems were investigated in spaces of generalized functions.
发表于 2025-3-26 12:20:14 | 显示全部楼层
Estimation in Parametric Models, function in G such that .(.) = 1 for dist (.,∂.)≤ε and .(.) = 0 for dist(.,∂.)≥ 2ε (ε > 0 is a sufficiently small number), then the rth-order expression . satisfies condition (6.1.4) but is not elliptic at any point of ∂..
发表于 2025-3-26 16:06:42 | 显示全部楼层
发表于 2025-3-26 20:27:33 | 显示全部楼层
https://doi.org/10.1007/978-90-481-3747-3 Thus, even in the case where the defect of problem (7.1.3) is equal to zero ., the problem with power singularities on the right-hand sides admits numerous solutions. To choose a unique solution, it is necessary to impose additional restrictions.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 03:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表