找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elements of Homotopy Theory; George W. Whitehead Textbook 1978 The Editor(s) (if applicable) and The Author(s), under exclusive license to

[复制链接]
查看: 48558|回复: 50
发表于 2025-3-21 16:50:33 | 显示全部楼层 |阅读模式
书目名称Elements of Homotopy Theory
编辑George W. Whitehead
视频video
丛书名称Graduate Texts in Mathematics
图书封面Titlebook: Elements of Homotopy Theory;  George W. Whitehead Textbook 1978 The Editor(s) (if applicable) and The Author(s), under exclusive license to
描述As the title suggests, this book is concerned with the elementary portion of the subject of homotopy theory. It is assumed that the reader is familiar with the fundamental group and with singular homology theory, including the Universal Coefficient and Kiinneth Theorems. Some acquaintance with manifolds and Poincare duality is desirable, but not essential. Anyone who has taught a course in algebraic topology is familiar with the fact that a formidable amount of technical machinery must be introduced and mastered before the simplest applications can be made. This phenomenon is also observable in the more advanced parts of the subject. I have attempted to short-circuit it by making maximal use of elementary methods. This approach entails a leisurely exposition in which brevity and perhaps elegance are sacrificed in favor of concreteness and ease of application. It is my hope that this approach will make homotopy theory accessible to workers in a wide range of other subjects-subjects in which its impact is beginning to be felt. It is a consequence of this approach that the order of development is to a certain extent historical. Indeed, if the order in which the results presented here
出版日期Textbook 1978
关键词Base; Calc; Characteristic class; Elements; Excision theorem; Fundamental group; Homotopie; Homotopy; Homoto
版次1
doihttps://doi.org/10.1007/978-1-4612-6318-0
isbn_softcover978-1-4612-6320-3
isbn_ebook978-1-4612-6318-0Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Busines
The information of publication is updating

书目名称Elements of Homotopy Theory影响因子(影响力)




书目名称Elements of Homotopy Theory影响因子(影响力)学科排名




书目名称Elements of Homotopy Theory网络公开度




书目名称Elements of Homotopy Theory网络公开度学科排名




书目名称Elements of Homotopy Theory被引频次




书目名称Elements of Homotopy Theory被引频次学科排名




书目名称Elements of Homotopy Theory年度引用




书目名称Elements of Homotopy Theory年度引用学科排名




书目名称Elements of Homotopy Theory读者反馈




书目名称Elements of Homotopy Theory读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:02:00 | 显示全部楼层
发表于 2025-3-22 03:05:18 | 显示全部楼层
发表于 2025-3-22 06:32:14 | 显示全部楼层
发表于 2025-3-22 11:38:21 | 显示全部楼层
Homology with Local Coefficients,e of the last chapter. If . → . is a cross-section over the .-skeleton, the problem of extending . reduces to a family of local problems: for each . + l)-cell . of ., the induced fibration over Δ. is fibre homotopically trivial. Its total space may thus be represented as a product Δ. x ., where . is
发表于 2025-3-22 16:25:15 | 显示全部楼层
Homology of Fibre Spaces: Elementary Theory,. The behavior of the homology groups is much more complicated. In the simplest case, that of a trivial fibration, the relationship is given by the Kimneth Theorem. The general case will be treated in Chapter XIII with the aid of the complicated machinery of spectral sequences. In this Chapter we sh
发表于 2025-3-22 19:48:08 | 显示全部楼层
发表于 2025-3-22 23:13:16 | 显示全部楼层
发表于 2025-3-23 02:46:24 | 显示全部楼层
发表于 2025-3-23 06:28:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 12:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表