找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elements of Applied Bifurcation Theory; Yuri A. Kuznetsov Book 19982nd edition Springer-Verlag New York 1998 bifurcation.dynamical systems

[复制链接]
楼主: Halcyon
发表于 2025-3-26 22:39:25 | 显示全部楼层
Commonwealth of Independent States,r the final two bifurcations in the previous chapter, the description of the majority of these bifurcations is incomplete in principle. For all but two cases, only . normal forms can be constructed. Some of these normal forms will be presented in terms of associated planar continuous-time systems wh
发表于 2025-3-27 04:11:42 | 显示全部楼层
Adnan Badran,Elias Baydoun,John R. Hillman routines like those for solving linear systems, finding eigenvectors and eigenvalues, and performing numerical integration of ODEs are known to the reader. Instead we focus on algorithms that are more specific to bifurcation analysis, specifically those for the location of equilibria (fixed points)
发表于 2025-3-27 08:08:56 | 显示全部楼层
发表于 2025-3-27 11:15:51 | 显示全部楼层
Elements of Applied Bifurcation Theory978-0-387-22710-8Series ISSN 0066-5452 Series E-ISSN 2196-968X
发表于 2025-3-27 13:36:31 | 显示全部楼层
Yuri A. KuznetsovDynamical systems continues to be a topic of current interest in mathematics, engineering, and physics..This modern approach provides the reader with a solid basis in dynamical systems theory and the
发表于 2025-3-27 19:28:18 | 显示全部楼层
发表于 2025-3-28 00:06:36 | 显示全部楼层
发表于 2025-3-28 04:36:09 | 显示全部楼层
发表于 2025-3-28 09:32:01 | 显示全部楼层
Bifurcations of Equilibria and Periodic Orbits in ,-Dimensional Dynamical Systems, we derive explicit formulas for the approximation of center manifolds in finite dimensions and for systems restricted to them at bifurcation parameter values. In Appendix 1 we consider a reaction-diffusion system on an interval to illustrate the necessary modifications of the technique to handle infinite-dimensional systems.
发表于 2025-3-28 14:12:33 | 显示全部楼层
Introduction to Dynamical Systems,scovered in the 1960s that rather simple dynamical systems may behave “randomly,” or “chaotically.” Finally, we discuss how differential equations can define dynamical systems in both finite- and infinite-dimensional spaces.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 19:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表