找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elements of Applied Bifurcation Theory; Yuri A. Kuznetsov Book 20043rd edition Springer Science+Business Media New York 2004 Mathematica.a

[复制链接]
楼主: 精明
发表于 2025-3-27 00:49:19 | 显示全部楼层
发表于 2025-3-27 01:39:09 | 显示全部楼层
发表于 2025-3-27 07:53:29 | 显示全部楼层
发表于 2025-3-27 11:23:52 | 显示全部楼层
发表于 2025-3-27 14:13:21 | 显示全部楼层
Mainstreaming Islam in Indonesiadependent version of the Center Manifold Theorem and Theorem 5.4 (see Chapter 5). We close this chapter with the derivation of the critical normal form coefficients for all codim 2 bifurcations using a combined reduction/normalization technique.
发表于 2025-3-27 21:12:58 | 显示全部楼层
Two-Parameter Bifurcations of Equilibria in Continuous-Time Dynamical Systems,dependent version of the Center Manifold Theorem and Theorem 5.4 (see Chapter 5). We close this chapter with the derivation of the critical normal form coefficients for all codim 2 bifurcations using a combined reduction/normalization technique.
发表于 2025-3-27 22:44:34 | 显示全部楼层
Introduction to Dynamical Systems,ions of ., and their .. As we shall see while analyzing the ., invariant sets can have very complex structures. This is closely related to the fact discovered in the 1960s that rather simple dynamical systems may behave “randomly,” or “chaotically.” Finally, we discuss how differential equations can
发表于 2025-3-28 02:45:18 | 显示全部楼层
发表于 2025-3-28 07:48:57 | 显示全部楼层
发表于 2025-3-28 11:36:49 | 显示全部楼层
Bifurcations of Equilibria and Periodic Orbits in ,-Dimensional Dynamical Systems,nsions. Indeed, the systems we analyzed were either one- or two-dimensional. This chapter shows that these bifurcations occur in “essentially” the same way for generic .-dimensional systems. As we shall see, there are certain parameter-dependent one- or two-dimensional . on which the system exhibits
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 15:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表