找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elementary Fixed Point Theorems; P.V. Subrahmanyam Textbook 2018 Springer Nature Singapore Pte Ltd. 2018 Partial order.Fixed Points.quasi-

[复制链接]
查看: 32040|回复: 48
发表于 2025-3-21 17:33:53 | 显示全部楼层 |阅读模式
书目名称Elementary Fixed Point Theorems
编辑P.V. Subrahmanyam
视频video
概述Discusses topics on basic fixed-point theorems due to Banach, Brouwer, Schauder and Tarski, their variants and applications.Introduces finite-dimensional degree theory based on Heinz‘s approach and so
丛书名称Forum for Interdisciplinary Mathematics
图书封面Titlebook: Elementary Fixed Point Theorems;  P.V. Subrahmanyam Textbook 2018 Springer Nature Singapore Pte Ltd. 2018 Partial order.Fixed Points.quasi-
描述.This book provides a primary resource in basic fixed-point theorems due to Banach, Brouwer, Schauder and Tarski and their applications. Key topics covered include Sharkovsky’s theorem on periodic points, Thron’s results on the convergence of certain real iterates, Shield’s common fixed theorem for a commuting family of analytic functions and Bergweiler’s existence theorem on fixed points of the composition of certain meromorphic functions with transcendental entire functions. Generalizations of Tarski’s theorem by Merrifield and Stein and Abian’s proof of the equivalence of Bourbaki–Zermelo fixed-point theorem and the Axiom of Choice are described in the setting of posets. A detailed treatment of Ward’s theory of partially ordered topological spaces culminates in Sherrer fixed-point theorem. It elaborates Manka’s proof of the fixed-point property of arcwise connected hereditarily unicoherent continua, based on the connection he observed between set theory and fixed-point theory viaa certain partial order. Contraction principle is provided with two proofs: one due to Palais and the other due to Barranga. Applications of the contraction principle include the proofs of algebraic Weie
出版日期Textbook 2018
关键词Partial order; Fixed Points; quasi-order; Contraction Principle; Cauchy-Kowalevsky Theorem; Brouwer’s Fix
版次1
doihttps://doi.org/10.1007/978-981-13-3158-9
isbn_ebook978-981-13-3158-9Series ISSN 2364-6748 Series E-ISSN 2364-6756
issn_series 2364-6748
copyrightSpringer Nature Singapore Pte Ltd. 2018
The information of publication is updating

书目名称Elementary Fixed Point Theorems影响因子(影响力)




书目名称Elementary Fixed Point Theorems影响因子(影响力)学科排名




书目名称Elementary Fixed Point Theorems网络公开度




书目名称Elementary Fixed Point Theorems网络公开度学科排名




书目名称Elementary Fixed Point Theorems被引频次




书目名称Elementary Fixed Point Theorems被引频次学科排名




书目名称Elementary Fixed Point Theorems年度引用




书目名称Elementary Fixed Point Theorems年度引用学科排名




书目名称Elementary Fixed Point Theorems读者反馈




书目名称Elementary Fixed Point Theorems读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:15:57 | 显示全部楼层
发表于 2025-3-22 04:02:18 | 显示全部楼层
发表于 2025-3-22 05:16:20 | 显示全部楼层
发表于 2025-3-22 09:29:43 | 显示全部楼层
https://doi.org/10.1007/978-3-662-55273-5This chapter is a precis of the basic definitions and theorems used in the sequel. It is presumed that the reader is familiar with naive set theory (see Halmos [.]) and the properties of real numbers and real functions (see Bartle [.]). Other mathematical concepts and theorems relevant to specific sections of a chapter will be recalled therein.
发表于 2025-3-22 13:51:13 | 显示全部楼层
发表于 2025-3-22 19:28:16 | 显示全部楼层
发表于 2025-3-22 22:02:07 | 显示全部楼层
发表于 2025-3-23 02:05:39 | 显示全部楼层
Lichtwellenleiterkomponenten und -systemeIn this chapter, fixed points of contractive and non-expansive mappings are studied, as also the convergence of their iterates.
发表于 2025-3-23 07:07:14 | 显示全部楼层
Anatoly Zankovsky,Christiane von der HeidenIn this chapter, we outline the proof that a reflexive non-square Banach space has fixed point property for non-expansive mappings on bounded closed convex sets. To this end some definitions are in order.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 00:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表