找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Electronic States in Crystals of Finite Size; Quantum confinement Shang Yuan Ren Book 20061st edition Springer-Verlag New York 2006 Finite

[复制链接]
楼主: magnify
发表于 2025-3-23 13:46:37 | 显示全部楼层
发表于 2025-3-23 13:54:50 | 显示全部楼层
,Ebene der Schülerinnen und Schüler,ntial period and . is a positive integer.. On the basis of the theory of differential equations in Chapter 2, exact and general results on the electronic states in such an ideal finite crystal can be analytically obtained. We will see that in obtaining the results in this chapter, it is the understa
发表于 2025-3-23 19:02:01 | 显示全部楼层
https://doi.org/10.1007/978-3-658-34021-6 this part and in Part II is that the corresponding Schrödinger equation for the electronic states in a three-dimensional crystal is a . differential equation; therefore, now the problem is a more difficult one. This is due to the fact that relative to the solutions of ordinary differential equation
发表于 2025-3-24 01:01:21 | 显示全部楼层
发表于 2025-3-24 04:28:06 | 显示全部楼层
https://doi.org/10.1007/978-3-322-80900-1n one more direction. In this chapter, we are interested in the electronic states in an orthorhombic finite crystal or quantum dot that can be considered as the onedimensional Bloch waves in a rectangular quantum wire discussed in Chapter 6 further confined by two boundary surfaces perpendicularly i
发表于 2025-3-24 07:25:07 | 显示全部楼层
发表于 2025-3-24 14:08:49 | 显示全部楼层
发表于 2025-3-24 18:22:52 | 显示全部楼层
Concluding Remarkss, based on a theory of differential equations approach. By ideal, it is assumed that (i) the potential . inside the low-dimensional system or the finite crystal is the same as in a crystal with translational invariance and (ii) the electronic states are completely confined in the limited size of the low-dimensional system or the finite crystal.
发表于 2025-3-24 20:37:25 | 显示全部楼层
978-1-4419-2087-4Springer-Verlag New York 2006
发表于 2025-3-25 00:43:02 | 显示全部楼层
Electronic States in Crystals of Finite Size978-0-387-26304-5Series ISSN 0081-3869 Series E-ISSN 1615-0430
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 23:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表