找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Einführung in Theorie und Anwendung der Laplace-Transformation; Ein Lehrbuch für Stu Gustav Doetsch Book 19702nd edition Springer Basel AG

[复制链接]
楼主: negation
发表于 2025-3-26 23:53:25 | 显示全部楼层
Die Konvergenzhalbebene,An den Beispielen des § 2 fällt auf, dass das, genaue Konvergenzgebiet des Laplace-Integrals immer eine Halbebene ist. Wir werden jetzt zeigen, dass dies allgemein zutrifft. Zuvor stellen wir jedoch das Gebiet der absoluten Konvergenz fest. Dazu verhilft uns folgender
发表于 2025-3-27 04:54:31 | 显示全部楼层
Die Laplace-Transformierte als analytische Funktion,Wir hatten S. 16 das L-Integral als kontinuierliches Analogon zur Potenzreihe aufgefasst. Wir wollen nun zeigen, dass ein L-Integral ebenso wie eine Potenzreihe stets eine analytische Funktion darstellt.
发表于 2025-3-27 08:17:05 | 显示全部楼层
Die Abbildung der Integration,Als wir in § 7 einige Operationen an der Originalfunktion vornahmen und feststellten, welche Operationen an der Bildfunktion ihnen entsprachen, handelte es sich um ganz einfache und elementare Operationen. Wir wollen nun zum ersten Mal die Abbildung einer transzendenten Operation an der Originalfunktion, nämlich der Integration, untersuchen.
发表于 2025-3-27 09:50:44 | 显示全部楼层
Die Abbildung der Differentiation,Wir leiten jetzt aus dem Integrationssatz 8.1 einen Satz über die Abbildung der Differentiation ab, der sich in den Anwendungsgebieten der L-Transformation als besonders wichtig erweisen wird. Dazu schicken wir eine Vorbemerkung voraus.
发表于 2025-3-27 17:04:02 | 显示全部楼层
Die Abbildung der Faltung,Bisher haben wir nur Operationen betrachtet, die an . Funktion ausgeübt werden wie z. B. die Differentiation. Es liegt nahe, zu Operationen überzugehen, die aus Kombinationen mehrerer Funktionen bestehen, wie z. B. Addition und Multiplikation.
发表于 2025-3-27 20:31:50 | 显示全部楼层
发表于 2025-3-28 00:32:29 | 显示全部楼层
Die Laplace-Transformierten einiger spezieller Distributionen,. ist von endlicher Ordnung und gleich ... (.), wo . (.) die durch (12.1) definierte stetige Funktion ist, die die Bedingungen (12.4,5) mit . = 0 erfüllt.
发表于 2025-3-28 04:35:04 | 显示全部楼层
发表于 2025-3-28 08:25:29 | 显示全部楼层
,Einführung des Laplace-Integrals von physikalischen und mathematischen Gesichtspunkten aus, . sowohl reelle als auch komplexe Werte annehmen kann. Wenn es .-Werte gibt, für die das Integral konvergiert, so wird dadurch eine Funktion .(.) definiert:. Inwiefern man diesen Zusammenhang zwischen den beiden Funktionen .(.) und .(.) als eine «Transformation», die sogenannte Laplace-Transformation, auffassen kann, wird in § 4 erklärt werden.
发表于 2025-3-28 13:44:55 | 显示全部楼层
,Die Lösungen der Differentialgleichung für spezielle Erregungen,as System aus einer durch .., ..′, ..., ... bestimmten Anfangslage heraus vollführt, wenn es sich selbst überlassen bleibt. Diese Lösung ist eine lineare Kombination von Funktionen der Gestalt .... und somit leicht überschaubar.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 20:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表