找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Effective Statistical Learning Methods for Actuaries III; Neural Networks and Michel Denuit,Donatien Hainaut,Julien Trufin Textbook 2019 S

[复制链接]
楼主: infection
发表于 2025-3-23 12:03:39 | 显示全部楼层
发表于 2025-3-23 14:30:55 | 显示全部楼层
Bayesian Neural Networks and GLM,nt of our a priori knowledge about parameters based on Markov Chain Monte Carlo methods. In order to explain those methods that are based on simulations, we need to review the main features of Markov chains.
发表于 2025-3-23 21:52:41 | 显示全部楼层
发表于 2025-3-24 01:09:09 | 显示全部楼层
Self-organizing Maps and k-Means Clustering in Non Life Insurance,curacy of the prediction. In this situation, the coefficient estimates of the multiple regression may change erratically in response to small changes in the model or the data. Self-organizing maps offer an elegant solution to segment explanatory variables and to detect dependence among covariates.
发表于 2025-3-24 02:27:30 | 显示全部楼层
Textbook 2019neously introduces the relevant tools for developing and analyzing neural networks, in a style that is mathematically rigorous yet accessible...Artificial intelligence and neural networks offer a powerful alternative to statistical methods for analyzing data. Various topics are covered from feed-for
发表于 2025-3-24 06:36:45 | 显示全部楼层
2523-3262 udy.Features a rigorous statistical analysis of neural netwo.This book reviews some of the most recent developments in neural networks, with a focus on applications in actuarial sciences and finance. It simultaneously introduces the relevant tools for developing and analyzing neural networks, in a s
发表于 2025-3-24 14:22:06 | 显示全部楼层
发表于 2025-3-24 14:58:48 | 显示全部楼层
Das Rezidiv in der gynäkologischen Onkologieward networks. First, we discuss the preprocessing of data and next we present a survey of the different methods for calibrating such networks. Finally, we apply the theory to an insurance data set and compare the predictive power of neural networks and generalized linear models.
发表于 2025-3-24 19:57:31 | 显示全部楼层
Neues Selbstbild und Rollenprofilwe cannot rely anymore on asymptotic properties of maximum likelihood estimators to approximate confidence intervals. Applying the Bayesian learning paradigm to neural networks or to generalized linear models results in a powerful framework that can be used for estimating the density of predictors.
发表于 2025-3-25 02:53:46 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 19:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表