找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Effective Statistical Learning Methods for Actuaries III; Neural Networks and Michel Denuit,Donatien Hainaut,Julien Trufin Textbook 2019 S

[复制链接]
查看: 37562|回复: 40
发表于 2025-3-21 17:39:24 | 显示全部楼层 |阅读模式
书目名称Effective Statistical Learning Methods for Actuaries III
副标题Neural Networks and
编辑Michel Denuit,Donatien Hainaut,Julien Trufin
视频video
概述Provides an exhaustive and self-contained presentation of neural networks applied to insurance.Can be used as course material or for self-study.Features a rigorous statistical analysis of neural netwo
丛书名称Springer Actuarial
图书封面Titlebook: Effective Statistical Learning Methods for Actuaries III; Neural Networks and  Michel Denuit,Donatien Hainaut,Julien Trufin Textbook 2019 S
描述.This book reviews some of the most recent developments in neural networks, with a focus on applications in actuarial sciences and finance. It simultaneously introduces the relevant tools for developing and analyzing neural networks, in a style that is mathematically rigorous yet accessible...Artificial intelligence and neural networks offer a powerful alternative to statistical methods for analyzing data. Various topics are covered from feed-forward networks to deep learning, such as Bayesian learning, boosting methods and Long Short Term Memory models. All methods are applied to claims, mortality or time-series forecasting..Requiring only a basic knowledge of statistics, this book is written for masters students in the actuarial sciences and for actuaries wishing to update their skills in machine learning...This is the third of three volumes entitled .Effective Statistical Learning Methods for Actuaries.. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance. Although closely related to the other two volumes, this volume can be read independently..
出版日期Textbook 2019
关键词62P05, 62-XX, 68-XX, 62M45; deep learing for insurance; neural networks; machine learning; actuarial mod
版次1
doihttps://doi.org/10.1007/978-3-030-25827-6
isbn_softcover978-3-030-25826-9
isbn_ebook978-3-030-25827-6Series ISSN 2523-3262 Series E-ISSN 2523-3270
issn_series 2523-3262
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Effective Statistical Learning Methods for Actuaries III影响因子(影响力)




书目名称Effective Statistical Learning Methods for Actuaries III影响因子(影响力)学科排名




书目名称Effective Statistical Learning Methods for Actuaries III网络公开度




书目名称Effective Statistical Learning Methods for Actuaries III网络公开度学科排名




书目名称Effective Statistical Learning Methods for Actuaries III被引频次




书目名称Effective Statistical Learning Methods for Actuaries III被引频次学科排名




书目名称Effective Statistical Learning Methods for Actuaries III年度引用




书目名称Effective Statistical Learning Methods for Actuaries III年度引用学科排名




书目名称Effective Statistical Learning Methods for Actuaries III读者反馈




书目名称Effective Statistical Learning Methods for Actuaries III读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:57:52 | 显示全部楼层
Effective Statistical Learning Methods for Actuaries IIINeural Networks and
发表于 2025-3-22 02:55:31 | 显示全部楼层
Matthäus Ebinal,Valery Mitjuschkin Shu and Burn (Water Resour Res 40:1–10, 2004) forecast flood frequencies with an ensemble of networks. We start this chapter by describing the bias-variance decomposition of the prediction error. Next, we discuss how aggregated models and randomized models reduce the prediction error by decreasing
发表于 2025-3-22 06:41:41 | 显示全部楼层
Textbook 2019hods for Actuaries.. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance. Although closely related to the other two volumes, this volume can be read independently..
发表于 2025-3-22 09:15:03 | 显示全部楼层
发表于 2025-3-22 15:48:10 | 显示全部楼层
发表于 2025-3-22 20:16:39 | 显示全部楼层
发表于 2025-3-22 21:22:16 | 显示全部楼层
Dimension-Reduction with Forward Neural Nets Applied to Mortality,native to principal component analysis (PCA) or non-linear PCA. In actuarial sciences, these networks can be used for understanding the evolution of longevity during the last century. We also introduce in this chapter a genetic algorithm for calibrating the neural networks. This method combined with a gradient descent speeds up the calibration.
发表于 2025-3-23 02:47:03 | 显示全部楼层
Neues Selbstbild und Rollenprofilnt of our a priori knowledge about parameters based on Markov Chain Monte Carlo methods. In order to explain those methods that are based on simulations, we need to review the main features of Markov chains.
发表于 2025-3-23 07:34:17 | 显示全部楼层
Lando Kirchmair,Daniel-Erasmus Khands of regularization for avoiding the overfitting. We next explain why deep neural networks outperform shallow networks for approximating hierarchical binary functions. This chapter is concluded by a numerical illustration.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 12:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表