找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Effective Non-Hermiticity and Topology in Markovian Quadratic Bosonic Dynamics; Vincent Paul Flynn Book 2024 The Editor(s) (if applicable)

[复制链接]
楼主: Opulent
发表于 2025-3-25 05:09:08 | 显示全部楼层
发表于 2025-3-25 10:22:09 | 显示全部楼层
Das Mikroskop und seine Anwendung stability phase boundaries utilizes the mathematical techniques of Krein stability theory, which we describe along the way as necessary. Putting these tools to use, we introduce a numerical indicator for dynamical stability phase transition known as . (KPR). Our development of this indicator, along
发表于 2025-3-25 13:21:11 | 显示全部楼层
发表于 2025-3-25 16:27:09 | 显示全部楼层
发表于 2025-3-25 21:20:20 | 显示全部楼层
,Gewässer, Oberflächenformen und Boden,ncations are dynamically stable, despite possessing an unstable infinite-size limit. Such systems possess bulk instabilities that are suppressed by imposing hard-wall boundaries. The evolution of dynamically metastable systems is characterized by a transient regime whereby generic observables are am
发表于 2025-3-26 03:52:03 | 显示全部楼层
https://doi.org/10.1007/978-3-658-25220-5lly metastable one, and a topologically metastable one. We explore the dynamical features of each phase in detail and, in particular, compute MBs that arise in the topologically metastable phases. The third model once again describes a dissipative BKC. However, in this model, the dissipator is const
发表于 2025-3-26 06:37:46 | 显示全部楼层
发表于 2025-3-26 10:37:15 | 显示全部楼层
Introduction, for this and motivate the move into an explicitly open Markovian setting in order to obtain bosonic signatures of non-trivial topology reminiscent of their fermionic counterparts. We then summarize all of the main results presented in the thesis.
发表于 2025-3-26 16:33:49 | 显示全部楼层
发表于 2025-3-26 20:14:11 | 显示全部楼层
Dynamical Stability Phase Transitions stability phase boundaries utilizes the mathematical techniques of Krein stability theory, which we describe along the way as necessary. Putting these tools to use, we introduce a numerical indicator for dynamical stability phase transition known as . (KPR). Our development of this indicator, along
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 11:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表