找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: EUROCODE ‘90; International Sympos Gérard Cohen,Pascale Charpin Conference proceedings 1991 Springer-Verlag Berlin Heidelberg 1991 Algebrai

[复制链接]
楼主: advocate
发表于 2025-3-23 20:08:35 | 显示全部楼层
Auflösung linearer GleichungssystemeFollowing R. Pellikaan who gave, in 1989, an algorithm which decodes geometric codes up to . errors where d* is the designed distance of the code, we describe an effective decoding procedure for some geometric codes on the Klein quartic.
发表于 2025-3-23 22:57:24 | 显示全部楼层
发表于 2025-3-24 06:17:31 | 显示全部楼层
A direct proof for the automorphism group of reed solomon codes,We introduce a special basis for the description of the primitive extended cyclic codes, considered as subspaces of the modular algebra A=GF(p.)[GF(p.)]. Using properties of this basis, we determine the automorphism group of some extended cyclic codes, among the extended Reed Solomon codes.
发表于 2025-3-24 09:44:06 | 显示全部楼层
Covering radius of RM(1,9) in RM(3,9),We give new properties about Fourier coefficients and we prove that the distance of the first order Reed-Muller code of length 512 to any cubic is at most 240.
发表于 2025-3-24 12:29:13 | 显示全部楼层
发表于 2025-3-24 17:26:38 | 显示全部楼层
发表于 2025-3-24 20:15:57 | 显示全部楼层
Decoding of codes on hyperelliptic curves,In 1989, R. Pellikaan gave an algorithm which decodes geometric codes up to .-errors, where .* is the designed distance of the code. Unfortunately this algorithm is not completely effective. I present facts about the jacobian of a hyperelliptic curve which permits in some cases to perform the algorithm.
发表于 2025-3-24 23:41:46 | 显示全部楼层
Decoding of codes on the klein quartic,Following R. Pellikaan who gave, in 1989, an algorithm which decodes geometric codes up to . errors where d* is the designed distance of the code, we describe an effective decoding procedure for some geometric codes on the Klein quartic.
发表于 2025-3-25 07:10:30 | 显示全部楼层
Asymptotically good families of geometric goppa codes and the gilbert-varshamov bound,This note presents a generalization of the fact that most of the classical Goppa codes lie arbitrarily close to the Gilbert-Varshamov bound (cf. [2, p. 229]).
发表于 2025-3-25 11:16:13 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 23:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表