找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ECML PKDD 2018 Workshops; DMLE 2018 and IoTStr Anna Monreale,Carlos Alzate,Rita P. Ribeiro Conference proceedings 2019 Springer Nature Swit

[复制链接]
查看: 8314|回复: 45
发表于 2025-3-21 18:50:27 | 显示全部楼层 |阅读模式
书目名称ECML PKDD 2018 Workshops
副标题DMLE 2018 and IoTStr
编辑Anna Monreale,Carlos Alzate,Rita P. Ribeiro
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: ECML PKDD 2018 Workshops; DMLE 2018 and IoTStr Anna Monreale,Carlos Alzate,Rita P. Ribeiro Conference proceedings 2019 Springer Nature Swit
描述This book constitutes revised selected papers from the workshops DMLE and IoTStream, held at the 18.th.European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, in Dublin, Ireland, in September 2018. .The 8 full papers presented in this volume were carefully reviewed and selected from a total of 12 submissions..The workshops included are:.DMLE 2018: First Workshop on Decentralized Machine Learning at the Edge.IoTStream 2018: 3rd Workshop on IoT Large Scale Machine Learning from Data Streams.
出版日期Conference proceedings 2019
关键词artificial intelligence; data mining; data stream; information retrieval; wireless telecommunication sys
版次1
doihttps://doi.org/10.1007/978-3-030-14880-5
isbn_softcover978-3-030-14879-9
isbn_ebook978-3-030-14880-5Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称ECML PKDD 2018 Workshops影响因子(影响力)




书目名称ECML PKDD 2018 Workshops影响因子(影响力)学科排名




书目名称ECML PKDD 2018 Workshops网络公开度




书目名称ECML PKDD 2018 Workshops网络公开度学科排名




书目名称ECML PKDD 2018 Workshops被引频次




书目名称ECML PKDD 2018 Workshops被引频次学科排名




书目名称ECML PKDD 2018 Workshops年度引用




书目名称ECML PKDD 2018 Workshops年度引用学科排名




书目名称ECML PKDD 2018 Workshops读者反馈




书目名称ECML PKDD 2018 Workshops读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:38:43 | 显示全部楼层
1865-0929 ully reviewed and selected from a total of 12 submissions..The workshops included are:.DMLE 2018: First Workshop on Decentralized Machine Learning at the Edge.IoTStream 2018: 3rd Workshop on IoT Large Scale Machine Learning from Data Streams.978-3-030-14879-9978-3-030-14880-5Series ISSN 1865-0929 Series E-ISSN 1865-0937
发表于 2025-3-22 01:59:56 | 显示全部楼层
Question Answering and Knowledge Graphsss formalizing the operations that can be addressed in alternative ways. We also include a set-up to evaluate generalized models based on their ability to replace the base ones from a predictive performance perspective, without loss of interpretability.
发表于 2025-3-22 05:44:06 | 显示全部楼层
L. E. Moreno Armella,Ana Isabel Sacristánmpirically that noise injection has no positive effect in expectation on linear models, though. However for non-linear neural networks we empirically show that noise injection substantially improves model quality helping to reach a generalization ability of a local model close to the serial baseline.
发表于 2025-3-22 11:28:34 | 显示全部楼层
发表于 2025-3-22 16:43:02 | 显示全部楼层
Generalizing Knowledge in Decentralized Rule-Based Modelsss formalizing the operations that can be addressed in alternative ways. We also include a set-up to evaluate generalized models based on their ability to replace the base ones from a predictive performance perspective, without loss of interpretability.
发表于 2025-3-22 18:15:14 | 显示全部楼层
Introducing Noise in Decentralized Training of Neural Networksmpirically that noise injection has no positive effect in expectation on linear models, though. However for non-linear neural networks we empirically show that noise injection substantially improves model quality helping to reach a generalization ability of a local model close to the serial baseline.
发表于 2025-3-22 21:50:51 | 显示全部楼层
发表于 2025-3-23 02:01:45 | 显示全部楼层
发表于 2025-3-23 07:55:45 | 显示全部楼层
3.524a challenging geospatial application, namely image-based geolocation using a state-of-the-art convolutional neural network. Our results lay the groundwork for deploying large-scale federated learning as a tool to automatically learn, and continually update, a machine-learned model that encodes location.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 04:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表