找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Dynamics of Circle Mappings; Edson de Faria,Pablo Guarino Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), und

[复制链接]
楼主: 杂技演员
发表于 2025-3-25 06:30:27 | 显示全部楼层
发表于 2025-3-25 10:53:01 | 显示全部楼层
Quasisymmetric RigidityIn addition to the real bounds, another important preliminary step towards establishing the . of multicritical circle maps (to be examined in Sect. .) is to answer the question: When are two topologically conjugate multicritical circle maps . conjugate? This question pertains to the general study of . of one-dimensional systems.
发表于 2025-3-25 15:37:13 | 显示全部楼层
Ergodic AspectsIn this chapter we examine multicritical circle maps from the point of view of measurable dynamics. We have seen in Theorem . that every homeomorphism of the circle without periodic points is uniquely ergodic. In particular, every multicritical circle map . with irrational rotation number is uniquely ergodic.
发表于 2025-3-25 17:11:09 | 显示全部楼层
发表于 2025-3-25 23:23:18 | 显示全部楼层
发表于 2025-3-26 00:15:59 | 显示全部楼层
Quasiconformal DeformationsThis chapter should be regarded as a second intermezzo (after Chap. .). Here we briefly review some standard facts about the theory of quasiconformal mappings in the complex plane and the Riemann sphere. In such a short exposition we can hardly do justice to this beautiful and powerful theory.
发表于 2025-3-26 05:15:45 | 显示全部楼层
发表于 2025-3-26 12:12:27 | 显示全部楼层
Renormalization: Holomorphic MethodsIn this final chapter we will survey some of the complex-analytic ideas that play a decisive role in the theory of (multi)critical circle maps.
发表于 2025-3-26 14:49:47 | 显示全部楼层
发表于 2025-3-26 17:39:00 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 18:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表