找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Dynamics of Circle Mappings; Edson de Faria,Pablo Guarino Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), und

[复制链接]
查看: 41328|回复: 50
发表于 2025-3-21 18:55:22 | 显示全部楼层 |阅读模式
书目名称Dynamics of Circle Mappings
编辑Edson de Faria,Pablo Guarino
视频video
概述Explores recent developments of invertible circle maps in one-dimensional dynamics.Focuses on global diffeomorphisms and smooth homeomorphisms with critical points.Aimed at graduate students and young
丛书名称IMPA Monographs
图书封面Titlebook: Dynamics of Circle Mappings;  Edson de Faria,Pablo Guarino Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), und
描述.This book explores recent developments in the dynamics of invertible circle maps, a rich and captivating topic in one-dimensional dynamics. It focuses on two main classes of invertible dynamical systems on the circle: global diffeomorphisms and smooth homeomorphisms with critical points. The latter is the book‘s core, reflecting the authors‘ recent research interests..Organized into four parts and 14 chapters, the content covers rigid rotations, circle homeomorphisms, and the concept of rotation number in the first part. The second part delves into circle diffeomorphisms, presenting classical results. The third part introduces multicritical circle maps—smooth homeomorphisms of the circle with a finite number of critical points. The fourth and final part centers on renormalization theory, analyzing the fine geometric structure of orbits of multicritical circle maps. Complete proofs for several fundamental results in circle dynamics are provided throughout. The book concludes with a list of open questions..Primarily intended for graduate students and young researchers in dynamical systems, this book is also suitable for mathematicians from other fields with an interest in the subjec
出版日期Textbook 2024Latest edition
关键词dynamical systems; one-dimensional systems; one-dimensonal dynamics; invertible circle maps; invertible
版次2
doihttps://doi.org/10.1007/978-3-031-67495-2
isbn_softcover978-3-031-67497-6
isbn_ebook978-3-031-67495-2
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Dynamics of Circle Mappings影响因子(影响力)




书目名称Dynamics of Circle Mappings影响因子(影响力)学科排名




书目名称Dynamics of Circle Mappings网络公开度




书目名称Dynamics of Circle Mappings网络公开度学科排名




书目名称Dynamics of Circle Mappings被引频次




书目名称Dynamics of Circle Mappings被引频次学科排名




书目名称Dynamics of Circle Mappings年度引用




书目名称Dynamics of Circle Mappings年度引用学科排名




书目名称Dynamics of Circle Mappings读者反馈




书目名称Dynamics of Circle Mappings读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:38:46 | 显示全部楼层
发表于 2025-3-22 04:09:43 | 显示全部楼层
Smooth Conjugacies to Rotationstion. In other words, the . orbit structure of such a diffeomorphism is indistinguishable from that of a rigid rotation. The relative order of points of a given orbit on the circle is the same no matter which orbit we take; everything is determined by a single invariant, the rotation number.
发表于 2025-3-22 05:04:31 | 显示全部楼层
发表于 2025-3-22 10:05:21 | 显示全部楼层
发表于 2025-3-22 16:50:29 | 显示全部楼层
发表于 2025-3-22 18:40:18 | 显示全部楼层
发表于 2025-3-22 22:54:31 | 显示全部楼层
Exponential Convergence: The Smooth Caseanswer Question .: let . be a topological conjugacy between two multicritical circle maps, say . and ., and assume that . identifies each critical point of . with a corresponding critical point of . having the same criticality.
发表于 2025-3-23 01:53:09 | 显示全部楼层
We will study the orbit structure of orientation-preserving homeomorphisms of the unit circle. As is customary, we will identify the boundary of the unit disk . with the one-dimensional torus ..
发表于 2025-3-23 09:35:30 | 显示全部楼层
Tingting Zhang,Lijun Xie,Xianzheng ZengThis chapter is to be regarded as an intermezzo. We want to move on to the study of homeomorphisms of the circle having one or more critical points.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 18:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表