找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Generative Modeling; Jakub M. Tomczak Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), under exclusive li

[复制链接]
查看: 31292|回复: 46
发表于 2025-3-21 16:23:52 | 显示全部楼层 |阅读模式
书目名称Deep Generative Modeling
编辑Jakub M. Tomczak
视频video
概述Comprehensive explanation of Generative AI techniques, providing code snippets for all presented models.Revised and expanded edition with new chapters on LLMs, Gen AI systems, and Probabilistic Modeli
图书封面Titlebook: Deep Generative Modeling;  Jakub M. Tomczak Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), under exclusive li
描述.This first comprehensive book on models behind Generative AI has been thoroughly revised to cover all major classes of deep generative models: mixture models, Probabilistic Circuits, Autoregressive Models, Flow-based Models, Latent Variable Models, GANs, Hybrid Models, Score-based Generative Models, Energy-based Models, and Large Language Models. In addition, Generative AI Systems are discussed, demonstrating how deep generative models can be used for neural compression, among others...Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics of machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It should find interest among students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics who wish to get familiar with deep generative modeling..In order to engage with a reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is availa
出版日期Textbook 2024Latest edition
关键词Generative AI; Large Language Models; Autoregressive models; Diffusion models; Score-based Generative Mo
版次2
doihttps://doi.org/10.1007/978-3-031-64087-2
isbn_softcover978-3-031-64089-6
isbn_ebook978-3-031-64087-2
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Deep Generative Modeling影响因子(影响力)




书目名称Deep Generative Modeling影响因子(影响力)学科排名




书目名称Deep Generative Modeling网络公开度




书目名称Deep Generative Modeling网络公开度学科排名




书目名称Deep Generative Modeling被引频次




书目名称Deep Generative Modeling被引频次学科排名




书目名称Deep Generative Modeling年度引用




书目名称Deep Generative Modeling年度引用学科排名




书目名称Deep Generative Modeling读者反馈




书目名称Deep Generative Modeling读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:52:20 | 显示全部楼层
发表于 2025-3-22 01:09:22 | 显示全部楼层
发表于 2025-3-22 06:11:29 | 显示全部楼层
Instrumente der strukturellen Führungort) in Chap. .. Both ARMs and flows model the likelihood function directly, that is, either by factorizing the distribution and parameterizing conditional distributions .(.|.) as in ARMs or by utilizing invertible transformations (neural networks) for the change of variables formula as in flows. No
发表于 2025-3-22 08:45:37 | 显示全部楼层
发表于 2025-3-22 14:09:23 | 显示全部楼层
发表于 2025-3-22 18:43:30 | 显示全部楼层
Selbst-Führung – der Weg aus dem Hamsterradquarter and full year 2020 results, 2020.). Assuming that users uploaded, on average, a single photo each day, the resulting volume of data would give a very rough (let me stress it, .) estimate of around 3000 TB of new images per day. This single case of Facebook alone already shows us the potentia
发表于 2025-3-22 22:23:13 | 显示全部楼层
interesting concepts? How come? The answer is simple: language. We communicate because the human species developed a pretty distinctive trait that allows us to formulate sounds in a very complex manner to express our ideas and experiences. At some point in our history, some people realized that we
发表于 2025-3-23 03:04:50 | 显示全部楼层
https://doi.org/10.1007/978-3-031-64087-2Generative AI; Large Language Models; Autoregressive models; Diffusion models; Score-based Generative Mo
发表于 2025-3-23 07:56:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-29 22:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表