找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Science; 10th International C Chengzhong Xu,Haiwei Pan,Zeguang Lu Conference proceedings 2024 The Editor(s) (if applicable) and The Au

[复制链接]
楼主: Gram114
发表于 2025-3-25 05:12:28 | 显示全部楼层
Conference proceedings 2024and engine; data security and privacy; big data mining and knowledge management...Part III: Infrastructure for data science; social media and recommendation system; multimedia data management and analysis..
发表于 2025-3-25 10:10:29 | 显示全部楼层
发表于 2025-3-25 12:03:50 | 显示全部楼层
Die Dreiermenge von Georg Cantor,ing, and then tested in a test set. Experimental results with relatively few model parameters show that our proposed method has good detection performance, while the model requires less storage space and has low computational overhead, making it suitable for network traffic detection and classification under edge networks.
发表于 2025-3-25 19:28:26 | 显示全部楼层
https://doi.org/10.1007/978-3-642-52575-9and using the adaptive mechanism to fuse these features, we aim to improve the accuracy of network performance evaluation. Furthermore, our extensive experiments have shown that TrafficNet can improve the Mean Squared Error(MSE) by 58.3% compared with the SOTA models.
发表于 2025-3-25 22:14:29 | 显示全部楼层
https://doi.org/10.1007/978-3-322-93533-5n addition, we put forward the Target Category Learner (TCL) module to simulate human questioning thinking, and apply a penalty mechanism to reduce repetition. Experimental results on the GuessWhat?! dataset show QIRE’s competitiveness in question quality and dialog effectiveness compared to existing methods.
发表于 2025-3-26 02:27:31 | 显示全部楼层
https://doi.org/10.1007/978-3-642-90899-6formation in videos, resulting in more precise prediction and analysis. The experimental results show that our multimodal variable-channel spatial-temporal semantic action recognition network achieves 98.3% and 89.9% accuracy in classifying actions on the large-scale human activity datasets NTU-RGB+D 60 and NTU-RGB+D 120 respectively.
发表于 2025-3-26 08:03:51 | 显示全部楼层
发表于 2025-3-26 12:19:14 | 显示全部楼层
A Lightweight Edge Network Intrusion Detection System Based on MobileViting, and then tested in a test set. Experimental results with relatively few model parameters show that our proposed method has good detection performance, while the model requires less storage space and has low computational overhead, making it suitable for network traffic detection and classification under edge networks.
发表于 2025-3-26 15:05:23 | 显示全部楼层
发表于 2025-3-26 18:59:27 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 23:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表