找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Engineering in Medical Imaging; Second MICCAI Worksh Binod Bhattarai,Sharib Ali,Danail Stoyanov Conference proceedings 2025 The Editor

[复制链接]
楼主: Polk
发表于 2025-3-30 11:32:20 | 显示全部楼层
发表于 2025-3-30 15:20:59 | 显示全部楼层
发表于 2025-3-30 19:33:14 | 显示全部楼层
,Evaluating Histopathology Foundation Models for Few-Shot Tissue Clustering: An Application to LC250, we create a clean version of LC25000. We then evaluate the quality of features extracted by these foundational models, using the clustering task as a benchmark. Our contributions are: 1) We publicly release our semi-automatic annotation pipeline along with the LC25000-clean dataset to facilitate a
发表于 2025-3-30 22:53:11 | 显示全部楼层
发表于 2025-3-31 03:43:42 | 显示全部楼层
发表于 2025-3-31 06:48:34 | 显示全部楼层
,Synthetic Simplicity: Unveiling Bias in Medical Data Augmentation,irst demonstrate this vulnerability on a digit classification task, where the model spuriously utilizes the source of data instead of the digit to provide an inference. We provide further evidence of this phenomenon in a medical imaging problem related to cardiac view classification in echocardiogra
发表于 2025-3-31 12:28:47 | 显示全部楼层
,Pre-processing and Quality Control of Large Clinical CT Head Datasets for Intracranial Arterial Cals (structural similarity index measure) to triage assessment of individual image series. Additionally, we propose superimposing thresholded binary masks of the series to inspect large quantities of data in parallel. We identify and exclude unrecoverable samples and registration failures..In total, o
发表于 2025-3-31 16:18:46 | 显示全部楼层
发表于 2025-3-31 19:40:14 | 显示全部楼层
发表于 2025-3-31 23:46:38 | 显示全部楼层
,Simple is More: Efficient Liver View Classification in Ultrasound Images Using Minimal Labeled DataimpleClassifier achieved an accuracy of 91.5% with 257 labeled frames, while ResNet-18 and MLP-Mixer required 801 labeled frames each to achieve 70.2% and 86% accuracy, respectively. These findings demonstrate that combining active learning with an AI classifier, regardless of its complexity, can im
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 12:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表