找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Engineering in Medical Imaging; Second MICCAI Worksh Binod Bhattarai,Sharib Ali,Danail Stoyanov Conference proceedings 2025 The Editor

[复制链接]
查看: 28670|回复: 59
发表于 2025-3-21 16:27:59 | 显示全部楼层 |阅读模式
书目名称Data Engineering in Medical Imaging
副标题Second MICCAI Worksh
编辑Binod Bhattarai,Sharib Ali,Danail Stoyanov
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Data Engineering in Medical Imaging; Second MICCAI Worksh Binod Bhattarai,Sharib Ali,Danail Stoyanov Conference proceedings 2025 The Editor
描述.This book constitutes the proceedings of the Second MICCAI Workshop on Data Engineering in Medical Imaging, DEMI 2024, held in conjunction with the 27th International conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024, in Marrakesh, Morocco, on October 10, 2024...The 18 papers presented in this book were carefully reviewed and selected. These papers focus on the application of various Data engineering techniques in the field of Medical Imaging... .. .
出版日期Conference proceedings 2025
关键词data augmentation; synthetic data; active learning; medical imaging; data synthesis; federated learning; m
版次1
doihttps://doi.org/10.1007/978-3-031-73748-0
isbn_softcover978-3-031-73747-3
isbn_ebook978-3-031-73748-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Data Engineering in Medical Imaging影响因子(影响力)




书目名称Data Engineering in Medical Imaging影响因子(影响力)学科排名




书目名称Data Engineering in Medical Imaging网络公开度




书目名称Data Engineering in Medical Imaging网络公开度学科排名




书目名称Data Engineering in Medical Imaging被引频次




书目名称Data Engineering in Medical Imaging被引频次学科排名




书目名称Data Engineering in Medical Imaging年度引用




书目名称Data Engineering in Medical Imaging年度引用学科排名




书目名称Data Engineering in Medical Imaging读者反馈




书目名称Data Engineering in Medical Imaging读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:00:19 | 显示全部楼层
,Evaluating Histopathology Foundation Models for Few-Shot Tissue Clustering: An Application to LC250kage in model training can lead to artificially high metrics that do not genuinely reflect the strength of the approach. The LC25000 dataset, consisting of tissue image tiles extracted from lung and colon samples, is a popular benchmark dataset. In the released version, tissue tiles were augmented r
发表于 2025-3-22 01:35:00 | 显示全部楼层
,Counterfactual Contrastive Learning: Robust Representations via Causal Image Synthesis,it is sensitive to the choice of augmentation pipeline. Positive pairs should preserve semantic information while destroying domain-specific information. Standard augmentation pipelines emulate domain-specific changes with pre-defined photometric transformations, but what if we could simulate realis
发表于 2025-3-22 05:54:04 | 显示全部楼层
,TTA-OOD: Test-Time Augmentation for Improving Out-of-Distribution Detection in Gastrointestinal Visting diagnosis within gastrointestinal settings is the detection of abnormal cases in endoscopic images. Due to the sparsity of data, this process of distinguishing normal from abnormal cases has faced significant challenges, particularly with rare and unseen conditions. To address this issue, we fr
发表于 2025-3-22 09:43:58 | 显示全部楼层
发表于 2025-3-22 16:17:00 | 显示全部楼层
,USegMix: Unsupervised Segment Mix for Efficient Data Augmentation in Pathology Images,l technique to mitigate this limitation. In this study, we introduce an efficient data augmentation method for pathology images, called USegMix. Given a set of pathology images, the proposed method generates a new, synthetic image in two phases. In the first phase, USegMix constructs a pool of tissu
发表于 2025-3-22 18:41:33 | 显示全部楼层
,Synthetic Simplicity: Unveiling Bias in Medical Data Augmentation,herent statistical characteristics can significantly impact downstream tasks, potentially compromising deployment performance. In this study, we empirically investigate this issue and uncover a critical phenomenon: downstream neural networks often exploit spurious distinctions between real and synth
发表于 2025-3-22 23:50:56 | 显示全部楼层
发表于 2025-3-23 05:08:12 | 显示全部楼层
发表于 2025-3-23 09:20:24 | 显示全部楼层
,Translating Simulation Images to X-Ray Images via Multi-scale Semantic Matching,ators to the real world remains an open problem. The key challenge is the virtual environments are usually not realistically simulated, especially the simulation images. In this paper, we propose a new method to translate simulation images from an endovascular simulator to X-ray images. Previous ima
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 09:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表