找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Dynamic Topology; Gordon Whyburn,Edwin Duda Textbook 1979 Springer-Verlag New York Inc. 1979 Area.Metrization theorem.Topologie.algebra.al

[复制链接]
楼主: Thoracic
发表于 2025-3-23 10:59:26 | 显示全部楼层
发表于 2025-3-23 17:47:44 | 显示全部楼层
发表于 2025-3-23 19:51:26 | 显示全部楼层
Methode,A set M in a metric space is said to have . if and only if for every . 0, M is the union of a finite number of connected sets, each of diameter less than ..
发表于 2025-3-24 00:10:44 | 显示全部楼层
Die marxistische WirtschaftstheorieA sequence ... in a metric space is said to be a . if for every . 0 there exists an integer . such that if ., then ....) < ..
发表于 2025-3-24 04:37:55 | 显示全部楼层
Sets and Operations with SetsWe shall somewhat imprecisely consider a set to be a collection of objects which satisfy a certain property. This is by no means a rigorous definition, and strictly speaking we shall not define the term set. We shall instead assume that the reader has an intuitive feeling for what constitutes a set and proceed accordingly.
发表于 2025-3-24 08:33:18 | 显示全部楼层
SpacesA . is a set . of elements together with a distinguished class of subsets called open sets satisfying the following axioms:
发表于 2025-3-24 14:39:33 | 显示全部楼层
Compact Sets and Bolzano-Weierstrass SetsA set . in a topological space . is said to be . if and only if any collection [G] of open sets covering . (i.e., ∪G ⊃ .) has a finite subcollection also covering .
发表于 2025-3-24 15:20:41 | 显示全部楼层
FunctionsIf . and . are two topological spaces, a . from . to . is any law which assigns to each element of . a unique element of . The action of this law is represented by . = ., where . ∊ . ∊..
发表于 2025-3-24 21:16:57 | 显示全部楼层
发表于 2025-3-25 01:01:38 | 显示全部楼层
Diameters and DistancesFor any set ., the .(.) is the l.u.b. (finite or infinite) of the aggregate of numbers [.(x, y)] for . ∊ ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 15:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表