找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Domain Generalization with Machine Learning in the NOvA Experiment; Andrew T.C. Sutton Book 2023 The Editor(s) (if applicable) and The Aut

[复制链接]
楼主: vitamin-D
发表于 2025-3-26 22:19:55 | 显示全部楼层
https://doi.org/10.1007/978-3-319-30552-3either electon or tau-type neutrinos. The NOvA experiment, being composed of materials with a low atomic number, was designed to efficiently detect both the muons and electrons that accompany a charge-current neutrino interaction.
发表于 2025-3-27 03:34:45 | 显示全部楼层
Pam Denbesten,Robert Faller,Yukiko Nakano particles, and apply machine learning techniques to determine their specific types. Finally, in order to perform our physics analyses, we must estimate the energies associated with each particle and interaction.
发表于 2025-3-27 07:00:03 | 显示全部楼层
发表于 2025-3-27 13:07:18 | 显示全部楼层
发表于 2025-3-27 15:05:41 | 显示全部楼层
Event Reconstruction, particles, and apply machine learning techniques to determine their specific types. Finally, in order to perform our physics analyses, we must estimate the energies associated with each particle and interaction.
发表于 2025-3-27 21:51:49 | 显示全部楼层
发表于 2025-3-28 00:12:26 | 显示全部楼层
发表于 2025-3-28 03:07:21 | 显示全部楼层
发表于 2025-3-28 07:09:47 | 显示全部楼层
Book 2023orks (NN) can be used to identify the particle types or determine their energies in detectors such as those used in the NOvA neutrino experiment, which studies changes in a beam of neutrinos as it propagates approximately 800 km through the earth. NOvA relies heavily on simulations of the physics pr
发表于 2025-3-28 12:26:13 | 显示全部楼层
Domain Generalization with Machine Learning in the NOvA Experiment
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 15:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表