找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Domain Adaptation and Representation Transfer; 5th MICCAI Workshop, Lisa Koch,M. Jorge Cardoso,Dong Yang Conference proceedings 2024 The Ed

[复制链接]
楼主: GOLF
发表于 2025-3-25 06:28:29 | 显示全部楼层
发表于 2025-3-25 07:44:29 | 显示全部楼层
发表于 2025-3-25 13:16:01 | 显示全部楼层
,Black-Box Unsupervised Domain Adaptation for Medical Image Segmentation,ng. In general, UDA assumes that information about the source model, such as its architecture and weights, and all samples from the source domains are available when a target domain model is trained. However, this is not a realistic assumption in applications where privacy and white-box attacks are
发表于 2025-3-25 19:03:02 | 显示全部楼层
发表于 2025-3-25 23:33:27 | 显示全部楼层
发表于 2025-3-26 03:41:01 | 显示全部楼层
发表于 2025-3-26 08:08:19 | 显示全部楼层
,Realistic Data Enrichment for Robust Image Segmentation in Histopathology,ng large-scale WSIs manually is a demanding and time-consuming task, unlikely to yield the expected results when used for fully supervised learning systems. Rarely observed disease patterns and large differences in object scales are difficult to model through conventional patient intake. Prior metho
发表于 2025-3-26 08:32:21 | 显示全部楼层
发表于 2025-3-26 14:48:16 | 显示全部楼层
,Semi-supervised Domain Adaptation for Automatic Quality Control of FLAIR MRIs in a Clinical Data Waassing various modalities, sequences, manufacturers and machines. In this study, we propose a semi-supervised domain adaptation (SSDA) framework for automatically detecting poor quality FLAIR MRIs within a clinical data warehouse. Leveraging a limited number of labelled FLAIR and a large number of l
发表于 2025-3-26 17:29:51 | 显示全部楼层
,Towards Foundation Models Learned from Anatomy in Medical Imaging via Self-supervision,s: (1) .: each anatomical structure is morphologically distinct from the others; and (2) .: each anatomical structure is an integrated part of a larger whole. We envision a foundation model for medical imaging that is . and . developed upon this foundation to gain the capability of “understanding” h
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 17:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表