找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Domain Adaptation and Representation Transfer; 5th MICCAI Workshop, Lisa Koch,M. Jorge Cardoso,Dong Yang Conference proceedings 2024 The Ed

[复制链接]
楼主: GOLF
发表于 2025-3-30 10:44:32 | 显示全部楼层
,Compositional Representation Learning for Brain Tumour Segmentation, presence or absence of the tumour (or the tumour sub-regions) in the image are constructed. Then, vMFNet models the encoded image features with von-Mises-Fisher (vMF) distributions, via learnable and compositional vMF kernels which capture information about structures in the images. We show that go
发表于 2025-3-30 13:45:01 | 显示全部楼层
,Realistic Data Enrichment for Robust Image Segmentation in Histopathology,egmentation of imbalanced objects within images. Therefore, we propose a new approach, based on diffusion models, which can enrich an imbalanced dataset with plausible examples from underrepresented groups by conditioning on segmentation maps. Our method can simply expand limited clinical datasets m
发表于 2025-3-30 18:14:02 | 显示全部楼层
发表于 2025-3-30 22:11:32 | 显示全部楼层
发表于 2025-3-31 02:48:17 | 显示全部楼层
发表于 2025-3-31 08:20:24 | 显示全部楼层
,SEDA: Self-ensembling ViT with Defensive Distillation and Adversarial Training for Robust Chest X-Refensive distillation for improved robustness against adversaries. Training using adversarial examples leads to better model generalizability and improves its ability to handle perturbations. Distillation using soft probabilities introduces uncertainty and variation into the output probabilities, ma
发表于 2025-3-31 09:59:28 | 显示全部楼层
发表于 2025-3-31 15:45:03 | 显示全部楼层
,Self-prompting Large Vision Models for Few-Shot Medical Image Segmentation,s decoder, and leveraging its interactive promptability, we achieve competitive results on multiple datasets (i.e. improvement of more than 15% compared to fine-tuning the mask decoder using a few images). Our code is available at 
发表于 2025-3-31 19:47:00 | 显示全部楼层
发表于 2025-4-1 00:36:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 18:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表