找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Document Analysis and Recognition – ICDAR 2023 Workshops; San José, CA, USA, A Mickael Coustaty,Alicia Fornés Conference proceedings 2023 T

[复制链接]
查看: 42230|回复: 61
发表于 2025-3-21 16:09:03 | 显示全部楼层 |阅读模式
书目名称Document Analysis and Recognition – ICDAR 2023 Workshops
副标题San José, CA, USA, A
编辑Mickael Coustaty,Alicia Fornés
视频videohttp://file.papertrans.cn/283/282317/282317.mp4
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Document Analysis and Recognition – ICDAR 2023 Workshops; San José, CA, USA, A Mickael Coustaty,Alicia Fornés Conference proceedings 2023 T
描述.This two-volume set LNCS 14193-14194 constitutes the proceedings of International Workshops co-located with the 17th International Conference on Document Analysis and Recognition, ICDAR 2023, held in San José, CA, USA, during August 21–26, 2023...The total of 43 regular papers presented in this book were carefully selected from 60 submissions. ..Part I contains 22 regular papers that stem from the following workshops:..ICDAR 2023 Workshop on Computational Paleography (IWCP);..ICDAR 2023 Workshop on Camera-Based Document Analysis and Recognition (CBDAR); ..ICDAR 2023 International Workshop on Graphics Recognition (GREC); ..ICDAR 2023 Workshop on Automatically Domain-Adapted and Personalized Document Analysis (ADAPDA);..Part II contains 21 regular papers that stem from the following workshops:.ICDAR 2023 Workshop on Machine Vision and NLP for Document Analysis (VINALDO);..ICDAR 2023 International Workshop on MachineLearning (WML)... .
出版日期Conference proceedings 2023
关键词Document Image Analysis and Recognition; Natural Language Processing; Computational Paleography; Digita
版次1
doihttps://doi.org/10.1007/978-3-031-41501-2
isbn_softcover978-3-031-41500-5
isbn_ebook978-3-031-41501-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Document Analysis and Recognition – ICDAR 2023 Workshops影响因子(影响力)




书目名称Document Analysis and Recognition – ICDAR 2023 Workshops影响因子(影响力)学科排名




书目名称Document Analysis and Recognition – ICDAR 2023 Workshops网络公开度




书目名称Document Analysis and Recognition – ICDAR 2023 Workshops网络公开度学科排名




书目名称Document Analysis and Recognition – ICDAR 2023 Workshops被引频次




书目名称Document Analysis and Recognition – ICDAR 2023 Workshops被引频次学科排名




书目名称Document Analysis and Recognition – ICDAR 2023 Workshops年度引用




书目名称Document Analysis and Recognition – ICDAR 2023 Workshops年度引用学科排名




书目名称Document Analysis and Recognition – ICDAR 2023 Workshops读者反馈




书目名称Document Analysis and Recognition – ICDAR 2023 Workshops读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:17:56 | 显示全部楼层
Leveraging Knowledge Graph Embeddings to Enhance Contextual Representations for Relation Extractionpresentation. We conducted a series of experiments which revealed promising and very interesting results for our proposed approach. The obtained results demonstrated an outperformance of our method compared to context-based relation extraction models.
发表于 2025-3-22 01:06:38 | 显示全部楼层
Extracting Key-Value Pairs in Business Documentstraction in business documents. Our approach is designed to be adaptable and requires minimal semantic and language-specific knowledge, making it suitable for a wide range of business documents. This flexibility allows our method to be easily applied to real-world scenarios, where documents may vary
发表于 2025-3-22 04:36:00 | 显示全部楼层
发表于 2025-3-22 10:07:51 | 显示全部楼层
Subgraph-Induced Extraction Technique for Information (SETI) from Administrative Documentsraph level and compare the results with baselines on private as well as public datasets. Our model succeeds in improving recall and precision scores for some classes in our private dataset and produces comparable results for public datasets designed for Form Understanding and Information Extraction.
发表于 2025-3-22 14:46:21 | 显示全部楼层
发表于 2025-3-22 17:48:19 | 显示全部楼层
发表于 2025-3-22 22:44:39 | 显示全部楼层
A Comparison of Demographic Attributes Detection from Handwriting Based on Traditional and Deep Learct the demographical attributes of writers. In the deep learning method, a Convolutional Neural Network model based on the ResNet architecture with a fully connected layer, followed by a softmax layer is used to provide probability scores to facilitate demographic information detection. To evaluate
发表于 2025-3-23 02:45:20 | 显示全部楼层
发表于 2025-3-23 08:13:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-20 05:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表