找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Document Analysis and Recognition – ICDAR 2023 Workshops; San José, CA, USA, A Mickael Coustaty,Alicia Fornés Conference proceedings 2023 T

[复制链接]
楼主: LEVEE
发表于 2025-3-28 15:39:06 | 显示全部楼层
发表于 2025-3-28 20:55:37 | 显示全部楼层
发表于 2025-3-29 00:08:30 | 显示全部楼层
Electron Holography: AlAs/GaAs Superlatticesgnition, is ligatures. A combination of a specific two or more character sequence takes a different shape than what those characters normally look like when they appear in a similar position. Deep learning-based systems are widely used for text recognition these days. In this work, we investigate th
发表于 2025-3-29 05:25:09 | 显示全部楼层
Hugh Rudnick,Constantin Velásquezble performance in addressing the task; however, most of these approaches rely on vast amounts of data from large-scale knowledge graphs or language models pretrained on voluminous corpora. In this paper, we hone in on the effective utilization of solely the knowledge supplied by a corpus to create
发表于 2025-3-29 10:47:32 | 显示全部楼层
发表于 2025-3-29 13:32:11 | 显示全部楼层
Hugh Rudnick,Constantin Velásquezwas not left behind with first Transformer based models for DU dating from late 2019. However, the computational complexity of the self-attention operation limits their capabilities to small sequences. In this paper we explore multiple strategies to apply Transformer based models to long multi-page
发表于 2025-3-29 18:47:18 | 显示全部楼层
Final-drive/Differential and Axle Shafts,e-art results. In this paper, we propose KAP a pre-trained model adapted for the domain specificity for corporate documents. KAP takes into account the domain specificity of corporate documents and proposes a model that integrates the local context of each word (i.e the words at the top, bottom, and
发表于 2025-3-29 22:58:14 | 显示全部楼层
发表于 2025-3-30 02:42:27 | 显示全部楼层
发表于 2025-3-30 07:25:48 | 显示全部楼层
Macmillan Motor Vehicle Engineering Seriess always a challenging task. On the other hand, large volumes of public training datasets related to administrative documents such as invoices are rare to find. In this work, we use Graph Attention Network model for information extraction. This type of model makes it easier to understand the mechani
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 08:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表