找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Document Analysis and Recognition – ICDAR 2021; 16th International C Josep Lladós,Daniel Lopresti,Seiichi Uchida Conference proceedings 202

[复制链接]
查看: 56002|回复: 53
发表于 2025-3-21 16:52:35 | 显示全部楼层 |阅读模式
书目名称Document Analysis and Recognition – ICDAR 2021
副标题16th International C
编辑Josep Lladós,Daniel Lopresti,Seiichi Uchida
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Document Analysis and Recognition – ICDAR 2021; 16th International C Josep Lladós,Daniel Lopresti,Seiichi Uchida Conference proceedings 202
描述.This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16.th. International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports..The papers are organized into the following topical sections: historical document analysis, document analysis systems, handwriting recognition, scene text detection and recognition, document image processing, natural language processing (NLP) for document understanding, and graphics, diagram and math recognition..
出版日期Conference proceedings 2021
关键词artificial intelligence; character recognition; computational linguistics; computer science; computer sy
版次1
doihttps://doi.org/10.1007/978-3-030-86549-8
isbn_softcover978-3-030-86548-1
isbn_ebook978-3-030-86549-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

书目名称Document Analysis and Recognition – ICDAR 2021影响因子(影响力)




书目名称Document Analysis and Recognition – ICDAR 2021影响因子(影响力)学科排名




书目名称Document Analysis and Recognition – ICDAR 2021网络公开度




书目名称Document Analysis and Recognition – ICDAR 2021网络公开度学科排名




书目名称Document Analysis and Recognition – ICDAR 2021被引频次




书目名称Document Analysis and Recognition – ICDAR 2021被引频次学科排名




书目名称Document Analysis and Recognition – ICDAR 2021年度引用




书目名称Document Analysis and Recognition – ICDAR 2021年度引用学科排名




书目名称Document Analysis and Recognition – ICDAR 2021读者反馈




书目名称Document Analysis and Recognition – ICDAR 2021读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:40:04 | 显示全部楼层
发表于 2025-3-22 01:38:37 | 显示全部楼层
Currently Available Systems: METALare generated using an automated multi-directional steerable filters approach. The generated wall masks are then validated and corrected manually. We validate our approach of wall-mask generation in state-of-the-art modern datasets. Finally we propose a U-net based convolutional framework for wall d
发表于 2025-3-22 06:08:22 | 显示全部楼层
Children in Translocal Familiess on cTDaR 2019 Archival dataset show that our method can outperform the baselines and achieve new state-of-the-art performance, which demonstrates the effectiveness and superiority of the proposed method.
发表于 2025-3-22 09:49:54 | 显示全部楼层
发表于 2025-3-22 13:53:43 | 显示全部楼层
The Abject, Murder, and Sex in ,+ntic features are extracted using a . network, which are . fused to make full use of complementary information. Finally, given component candidates, a . based on graph neural network is incorported to model relations between components and output final results. On three popular benchmarks, VSR outpe
发表于 2025-3-22 18:03:50 | 显示全部楼层
https://doi.org/10.1007/978-981-10-8609-0d applications. The core . library comes with a set of simple and intuitive interfaces for applying and customizing DL models for layout detection, character recognition, and many other document processing tasks. To promote extensibility, . also incorporates a community platform for sharing both pre
发表于 2025-3-22 23:32:53 | 显示全部楼层
https://doi.org/10.1007/978-94-007-2315-3ression algorithms can be successfully applied for the task of document image classification. We further analyze the impact of model compression on network outputs and highlight the discrepancy that arises during the compression process. Building on recent findings in this direction, we employ a pri
发表于 2025-3-23 03:37:58 | 显示全部楼层
发表于 2025-3-23 06:13:34 | 显示全部楼层
Translocality in Contemporary City Novelsof the proposed model on the three datasets: IAM Handwriting, Rimes, and TUAT Kondate. The experimental results show that the proposed model achieves similar or better accuracy when compared to state-of-the-art models in all datasets.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 08:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表