找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Document Analysis and Recognition – ICDAR 2021; 16th International C Josep Lladós,Daniel Lopresti,Seiichi Uchida Conference proceedings 202

[复制链接]
楼主: deteriorate
发表于 2025-3-28 17:24:47 | 显示全部楼层
发表于 2025-3-28 20:36:46 | 显示全部楼层
发表于 2025-3-29 02:43:35 | 显示全部楼层
https://doi.org/10.1007/978-3-319-89734-9fferent learning-free document analysis tasks. While machine learning is rather unexplored for graph representations, geometric deep learning offers a novel framework that allows for convolutional neural networks similar to the image domain. In this work, we show that the concept of attribute predic
发表于 2025-3-29 07:05:05 | 显示全部楼层
发表于 2025-3-29 11:07:26 | 显示全部楼层
发表于 2025-3-29 14:29:38 | 显示全部楼层
发表于 2025-3-29 19:04:54 | 显示全部楼层
发表于 2025-3-29 22:11:56 | 显示全部楼层
https://doi.org/10.1007/978-981-10-8609-0 easily deployed in production and extended for further investigation. However, various factors like loosely organized codebases and sophisticated model configurations complicate the easy reuse of important innovations by a wide audience. Though there have been on-going efforts to improve reusabilit
发表于 2025-3-29 23:59:45 | 显示全部楼层
https://doi.org/10.1007/978-94-007-2315-3ion is a common process in business workflows, there is a dire need of analyzing the potential of compressed models for the task of document image classification. Surprisingly, no such analysis has been done in the past. Furthermore, once a compressed model is obtained using a particular compression
发表于 2025-3-30 04:42:48 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 13:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表