找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Document Analysis Systems; 14th IAPR Internatio Xiang Bai,Dimosthenis Karatzas,Daniel Lopresti Conference proceedings 2020 Springer Nature

[复制链接]
楼主: Sediment
发表于 2025-3-30 08:26:24 | 显示全部楼层
发表于 2025-3-30 15:31:05 | 显示全部楼层
Shinichi Ichimura,Tsuneaki Satoical character recognition (OCR) performance prior to any actual recognition, but also provides immediate feedback on whether the documents meet the quality requirements for other high level document processing and analysis tasks. In this work, we present a deep neural network (DNN) to accomplish th
发表于 2025-3-30 20:18:15 | 显示全部楼层
Arie Kuyvenhoven,Olga Memedovic,Nico Windts work we focus on decorated background removal and the extraction of textual components from French university diploma. As far as we know, this is the very first attempt to resolve this kind of problem on French university diploma images. Hence, we make our dataset public for further research, rela
发表于 2025-3-30 21:24:42 | 显示全部楼层
Transition in Central and Eastern Europeon is a key step in table understanding. Nowadays, the most successful methods for table detection in document images employ deep learning algorithms; and, particularly, a technique known as .. In this context, such a technique exports the knowledge acquired to detect objects in natural images to de
发表于 2025-3-31 03:00:30 | 显示全部楼层
Arie Kuyvenhoven,Olga Memedovic,Nico Windtmanually annotating the bounding boxes of graphical or page objects in publicly available annual reports. This dataset contains a total of 13. annotated page images with objects in five different popular categories—table, figure, natural image, logo, and signature. It is the largest manually annotat
发表于 2025-3-31 08:43:29 | 显示全部楼层
发表于 2025-3-31 12:27:24 | 显示全部楼层
Maximum Entropy Regularization and Chinese Text Recognitionlasses, which causes a serious overfitting problem. We propose to apply Maximum Entropy Regularization to regularize the training process, which is to simply add a negative entropy term to the canonical cross-entropy loss without any additional parameters and modification of a model. We theoreticall
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 15:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表