找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Dispersive Equations and Nonlinear Waves; Generalized Korteweg Herbert Koch,Daniel Tataru,Monica Vişan Textbook 2014 Springer Basel 2014 Fo

[复制链接]
楼主: analgesic
发表于 2025-3-26 21:50:04 | 显示全部楼层
Structure of the Financial Systemeralization of the Riemann–Stieltjes integral to functions of bounded .-variation against the derivative of a function of bounded .-variation, 1. + 1. 1, is due to Young [34]. Much later Lyons developed his theory of rough paths [23] and [24], building on Young’s ideas, but going much further.
发表于 2025-3-27 02:20:52 | 显示全部楼层
https://doi.org/10.1007/978-3-319-77727-6 [7] and by Grünrock for the Airy equation [10] and the Kadomtsev–Petviashvili II equation [11]. The bilinear estimates for the Kadomtsev–Petviashvili equation have been influenced by the careful work of M. Hadac. Bilinear estimates are standard tools in dispersive equations.
发表于 2025-3-27 06:50:27 | 显示全部楼层
https://doi.org/10.1007/978-3-319-77727-6The first example describes the interaction of three waves of different velocities. It is elementary and displays the role of adapted function spaces on an elementary level. The limitations of our current understanding become obvious as well: The result should remain true under small perturbations o
发表于 2025-3-27 09:43:04 | 显示全部楼层
发表于 2025-3-27 16:37:48 | 显示全部楼层
发表于 2025-3-27 21:11:06 | 显示全部楼层
Well-posedness for nonlinear dispersive equationson an elementary level. The limitations of our current understanding become obvious as well: The result should remain true under small perturbations of the system, but I have no idea how to approach perturbed equations.
发表于 2025-3-28 01:33:31 | 显示全部楼层
1661-237X al blow up solutions and interaction Morawetz estimates.IntrThe first part of the book provides an introduction to key tools and techniques in dispersive equations: Strichartz estimates, bilinear estimates, modulation and adapted function spaces, with an application to the generalized Korteweg-de Vr
发表于 2025-3-28 04:40:43 | 显示全部楼层
发表于 2025-3-28 07:47:24 | 显示全部楼层
发表于 2025-3-28 11:37:47 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-30 08:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表