找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Digital Signal Processing; Theory and Practice K. Deergha Rao,M.N.S. Swamy Textbook 2018 Springer Nature Singapore Pte Ltd. 2018 Digital Si

[复制链接]
楼主: ACRO
发表于 2025-3-26 22:38:26 | 显示全部楼层
Sade’s Theory of Libertine Askesis represents the DFT of a finite length sequence. Further, evaluation of linear convolution using the DFT is discussed. Finally, some fast Fourier transform (FFT) algorithms for efficient computation of DFT are described.
发表于 2025-3-27 01:52:51 | 显示全部楼层
Margareta Stefanovic,Michael G. Safonovransforming the prototype to a digital filter. In this chapter, the design of analog lowpass filters is first described. Second, frequency transformations for transforming analog lowpass filter into bandpass, bandstop, or highpass analog filters are considered.
发表于 2025-3-27 08:18:51 | 显示全部楼层
The Discrete Fourier Transform, represents the DFT of a finite length sequence. Further, evaluation of linear convolution using the DFT is discussed. Finally, some fast Fourier transform (FFT) algorithms for efficient computation of DFT are described.
发表于 2025-3-27 13:15:25 | 显示全部楼层
IIR Digital Filter Design,ransforming the prototype to a digital filter. In this chapter, the design of analog lowpass filters is first described. Second, frequency transformations for transforming analog lowpass filter into bandpass, bandstop, or highpass analog filters are considered.
发表于 2025-3-27 15:24:14 | 显示全部楼层
发表于 2025-3-27 20:37:15 | 显示全部楼层
发表于 2025-3-27 23:35:19 | 显示全部楼层
The ,-Transform and Analysis of LTI Systems in the Transform Domain,ot exist. Also, the .-transform allows simple algebraic manipulations. As such, the .-transform has become a powerful tool in the analysis and design of digital systems. This chapter introduces the .-transform, its properties, the inverse .-transform, and methods for finding it. Also, in this chapte
发表于 2025-3-28 05:07:16 | 显示全部楼层
发表于 2025-3-28 08:40:37 | 显示全部楼层
发表于 2025-3-28 11:37:09 | 显示全部楼层
Multirate Filter Banks,er bank. The structure of an .-band analysis filter bank is shown in Fig. 9.1a. Each subfilter .(.) is called an analysis filter. The analysis filters .(.) for . = 0, 1, …, . − 1 decompose the input signal .(.) into a set of . subband signals . Each subband signal occupies a portion of the original
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 11:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表