找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Digital Ecosystem for Innovation in Agriculture; Sanjay Chaudhary,Chandrashekhar M. Biradar,Mehul S Book 2023 The Editor(s) (if applicable

[复制链接]
楼主: Inspection
发表于 2025-3-26 22:00:43 | 显示全部楼层
发表于 2025-3-27 05:02:41 | 显示全部楼层
Hyperspectral Remote Sensing for Agriculture Land Use and Land Cover Classificationnd spectra with higher correlation for agriculture and built-up classes. Classification is performed using seven per pixel classifiers and one ensemble classifier. Support vector (SVM) and ensemble classifiers for both Hyperion and AVIRIS-NG HyS images have shown higher accuracy with accuracy percen
发表于 2025-3-27 09:21:23 | 显示全部楼层
发表于 2025-3-27 12:49:20 | 显示全部楼层
发表于 2025-3-27 15:47:08 | 显示全部楼层
发表于 2025-3-27 18:43:50 | 显示全部楼层
Ahmad M. Salih,Mazni Omar,Azman Yasinitoring at a larger scale. This chapter focuses on the use of open-source high-resolution (in terms of spectral, spatial, and temporal resolution) satellite data; open source cloud-based platforms, and big data algorithms that are reforming agriculture. This book chapter will detail the available op
发表于 2025-3-27 23:11:25 | 显示全部楼层
发表于 2025-3-28 05:00:55 | 显示全部楼层
发表于 2025-3-28 09:37:51 | 显示全部楼层
发表于 2025-3-28 10:55:44 | 显示全部楼层
https://doi.org/10.1007/978-3-662-48634-4 CWR methods in India are mainly based on sparsely located in situ measurements and high-resolution remote sensing data, which limit the overall precision. To overcome the mentioned challenge, the deep learning architecture and soil moisture techniques have been used in this study to generate high-r
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 10:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表