找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Differential Galois Theory and Non-Integrability of Hamiltonian Systems; Juan J. Morales Ruiz Book 1999 Springer Basel 1999 Dynamical Syst

[复制链接]
楼主: 你太谦虚
发表于 2025-3-23 12:59:22 | 显示全部楼层
发表于 2025-3-23 15:39:43 | 显示全部楼层
,An Application of the Lamé Equation,n and A and . are, in general, complex parameters. It is assumed, in what follows, that the roots of the polynomial . associated to . are simple (otherwise . is reduced to elementary functions). This is ensured if the discriminant.is non-zero, where g. and g. are the associated invariants (see Chapter 2).
发表于 2025-3-23 22:01:04 | 显示全部楼层
发表于 2025-3-24 00:48:28 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-8718-2Dynamical System; Galois group; Galois theory; algebra; differential algebra; differential equation; dynam
发表于 2025-3-24 04:07:00 | 显示全部楼层
https://doi.org/10.1007/978-3-031-54196-4ility” i.e., solutions in closed form: an equation is integrable if the general solution is obtained by a combination of algebraic functions (over the coefficient field), exponentiation of quadratures and quadratures. Furthermore, all information about the integrability of the equation is coded in t
发表于 2025-3-24 07:41:44 | 显示全部楼层
Maria Luisa De Rimini,Giovanni Borrelliy i.e., Liouville integrability: the existence of . independent first integrals in involution, . being the number of degrees of freedom. Although integrability is well defined for these systems, it is very important to clarify what kind of regularity is allowed for the first integrals: differentiabi
发表于 2025-3-24 13:56:44 | 显示全部楼层
发表于 2025-3-24 18:26:35 | 显示全部楼层
发表于 2025-3-24 21:38:14 | 显示全部楼层
The Bone Pathway: 223Ra-Dichloride,c differential Galois criterion of non-integrability based on the analysis in the . phase space of the variational equations along a particular integral curve. This problem was proposed in Section 6.4 (Question 2).
发表于 2025-3-25 02:55:35 | 显示全部楼层
Differential Galois Theory and Non-Integrability of Hamiltonian Systems
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 23:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表