找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deterministic Nonlinear Systems; A Short Course Vadim S. Anishchenko,Tatyana E. Vadivasova,Galina Textbook 2014 Springer International Pub

[复制链接]
查看: 31158|回复: 54
发表于 2025-3-21 19:32:21 | 显示全部楼层 |阅读模式
书目名称Deterministic Nonlinear Systems
副标题A Short Course
编辑Vadim S. Anishchenko,Tatyana E. Vadivasova,Galina
视频video
概述Authored by leading researchers in the field.Concise introduction and presentation, suitable as textbook and as self-study guide.Particular emphasis on systems with self-sustained oscillations and syn
丛书名称Springer Series in Synergetics
图书封面Titlebook: Deterministic Nonlinear Systems; A Short Course Vadim S. Anishchenko,Tatyana E. Vadivasova,Galina  Textbook 2014 Springer International Pub
描述.This text is a short yet complete course on nonlinear dynamics of deterministic systems. Conceived as a modular set of 15 concise lectures it reflects the many years of teaching experience by the authors. The lectures treat in turn the fundamental aspects of the theory of dynamical systems, aspects of stability and bifurcations, the theory of deterministic chaos and attractor dimensions, as well as the elements of the theory of Poincare recurrences.Particular attention is paid to the analysis of the generation of periodic, quasiperiodic and chaotic self-sustained oscillations and to the issue of synchronization in such systems. .This book is aimed at graduate students and non-specialist researchers with a background in physics, applied mathematics and engineering wishing to enter this exciting field of research..
出版日期Textbook 2014
关键词Anishchenko-Astakhov Oscillator; Deterministic Chaos Theory; Nonlinear Dynamics Textbook; Oscillations
版次1
doihttps://doi.org/10.1007/978-3-319-06871-8
isbn_softcover978-3-319-37852-7
isbn_ebook978-3-319-06871-8Series ISSN 0172-7389 Series E-ISSN 2198-333X
issn_series 0172-7389
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

书目名称Deterministic Nonlinear Systems影响因子(影响力)




书目名称Deterministic Nonlinear Systems影响因子(影响力)学科排名




书目名称Deterministic Nonlinear Systems网络公开度




书目名称Deterministic Nonlinear Systems网络公开度学科排名




书目名称Deterministic Nonlinear Systems被引频次




书目名称Deterministic Nonlinear Systems被引频次学科排名




书目名称Deterministic Nonlinear Systems年度引用




书目名称Deterministic Nonlinear Systems年度引用学科排名




书目名称Deterministic Nonlinear Systems读者反馈




书目名称Deterministic Nonlinear Systems读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:23:06 | 显示全部楼层
发表于 2025-3-22 01:40:57 | 显示全部楼层
发表于 2025-3-22 05:37:12 | 显示全部楼层
,Systems with Phase Space Dimension , ≥ 3: Deterministic Chaos,uilibrium states and limit cycles increases significantly, and many of them have not yet been studied. Some saddle sets become possible, such as an equilibrium state of the saddle-focus type and a saddle limit cycle. A cycle of the saddle-focus type and a saddle torus can be realized in a phase spac
发表于 2025-3-22 12:00:40 | 显示全部楼层
From Order to Chaos: Bifurcation Scenarios (Part I),ce of nonlinearity increases, the dynamical regime becomes more complicated. Simple attractors in the phase space of a dissipative system are replaced by more complicated ones. Under certain conditions, nonlinearity can lead to the onset of dynamical chaos. Moving along a relevant direction in the p
发表于 2025-3-22 12:57:22 | 显示全部楼层
发表于 2025-3-22 19:29:45 | 显示全部楼层
Robust and Nonrobust Dynamical Systems: Classification of Attractor Types,yagin systems on the plane, there appears a class of robust systems with nontrivial hyperbolicity, i.e., systems with chaotic dynamics. Chaotic attractors of robust hyperbolic systems are, in the rigorous mathematical sense, strange attractors. They usually represent some mathematical idealization a
发表于 2025-3-22 23:15:00 | 显示全部楼层
发表于 2025-3-23 05:21:22 | 显示全部楼层
发表于 2025-3-23 09:20:44 | 显示全部楼层
Quasiperiodic Oscillator with Two Independent Frequencies,ct that they include two or more independent frequencies in the oscillation spectrum: . where ..(.) = ..., . = 1, 2, ., .. As a result, .(.) in (12.1) is 2.-periodic in each argument ..(.), but the quasiperiodic process itself is, in the general case, non-periodic, i.e., .(.) ≠ .(. + ..).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 12:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表